Methylation of long non-coding rna genes: SNHG6, SNHG12, TINCR in ovarian cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ovarian cancer (OC) develops asymptomatically and is not diagnosed until advanced stages, which increases the mortality rate from this disease. In the diagnosis and treatment of OC, new prospects have been opened in studies of the gene regulation mechanisms involving long non-coding RNAs (lncRNAs) and identification of lncRNA genes inhibited by methylation of promoter regions. Using a set of 122 samples of primary OC tumors, by methylation specific real-time PCR, changes in the methylation level of a group of lncRNA genes were studied: PLUT, SNHG1, SNHG6, SNHG12, and TINCR. Using the nonparametric Mann–Whitney test, a statistically significant (p < 0.001) increase in the methylation level of these 5 lncRNA genes in tumors was shown. A statistically significant (p < 0.05) correlation was established between the level of methylation of the lncRNA genes SNHG6, SNHG12 and TINCR with the stage of the tumor process, the histological grade and the presence of metastases. Using real-time RT-qPCR, a decrease in the expression level of the SNHG6, SNHG12 and TINCR genes was observed and a significant correlation of methylation with the expression of SNHG6 and TINCR was shown (rs ≤ −0.5, p < 0.001). Thus, new lncRNA genes representing potential epigenetic markers of ovarian cancer have been identified.

Full Text

Restricted Access

About the authors

S. S. Lukina

Institute of General Pathology and Pathophysiology

Email: burdennyy@gmail.com
Russian Federation, Moscow, 125315

A. M. Burdennyy

Institute of General Pathology and Pathophysiology

Author for correspondence.
Email: burdennyy@gmail.com
Russian Federation, Moscow, 125315

E. A. Filippova

Institute of General Pathology and Pathophysiology

Email: burdennyy@gmail.com
Russian Federation, Moscow, 125315

L. A. Uroshlev

Vavilov Institute of General Genetics, Russian Academy of Science

Email: burdennyy@gmail.com
Russian Federation, Moscow, 119991

I. V. Pronina

Institute of General Pathology and Pathophysiology

Email: burdennyy@gmail.com
Russian Federation, Moscow, 125315

N. A. Ivanova

Institute of General Pathology and Pathophysiology

Email: burdennyy@gmail.com
Russian Federation, Moscow, 125315

M. V. Fridman

Vavilov Institute of General Genetics, Russian Academy of Science

Email: burdennyy@gmail.com
Russian Federation, Moscow, 119991

K. I. Zhordania

N.N. Blokhin National Medical Research Center of Oncology

Email: burdennyy@gmail.com
Russian Federation, Moscow, 115478

T. P. Kazubskaya

N.N. Blokhin National Medical Research Center of Oncology

Email: burdennyy@gmail.com
Russian Federation, Moscow, 115478

N. E. Kushlinskii

N.N. Blokhin National Medical Research Center of Oncology

Email: burdennyy@gmail.com
Russian Federation, Moscow, 115478

V. I. Loginov

Institute of General Pathology and Pathophysiology; Research Centre for Medical Genetics

Email: eleonora10_45@mail.ru
Russian Federation, Moscow, 125315; Moscow, 115522

E. A. Braga

Institute of General Pathology and Pathophysiology; Research Centre for Medical Genetics

Email: eleonora10_45@mail.ru
Russian Federation, Moscow, 125315; Moscow, 115522

References

  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249. doi: 10.3322/caac.21660
  2. (2022) Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. Каприна А.Д., Старинского В.В., Шахзадовой А.О. Москва: МНИОИ им. П.А. Герцена – филиал ФГБУ “НМИЦ радиологии” Минздрава России, 252 с.
  3. Baek D., Villén J., Shin C., Camargo F.D., Gygi S.P., Bartel D.P. (2008) The impact of microRNAs on protein output. Nature. 455(7209), 64–71. doi: 10.1038/nature07242
  4. Esteller M. (2011) Non-coding RNAs in human disease. Nat. Rev. Genet. 12(12), 861–874. doi: 10.1038/nrg3074
  5. Буре И.В., Кузнецова Е.Б., Залетаев Д.В. (2018) Длинные некодирующие РНК и их роль в онкогенезе. Молекуляр. биология. 52(6), 907–920. doi: 10.1134/S0026893318060031)
  6. Zhang X., Wang W., Zhu W., Dong J., Cheng Y., Yin Z., Shen F. (2019) Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci. 20(22), 5573. doi: 10.3390/ijms20225573.
  7. Guttman M., Rinn J.L. (2012) Modular regulatory principles of large non-coding RNAs. Nature. 482(7385), 339–346. doi: 10.1038/nature10887
  8. Murtha M., Esteller M. (2016) Extraordinary cancer epigenomics: thinking outside the classical coding and promoter box. Trends Cancer. 2(10), 572–584. doi: 10.1016/j.trecan.2016.08.004
  9. Moutinho C., Esteller M. (2017) MicroRNAs and epigenetics. Adv. Cancer Res. 135, 189–220. doi: 10.1016/bs.acr.2017.06.003
  10. Sheng X., Li J., Yang L., Chen Z., Zhao Q., Tan L., Zhou Y., Li J. (2014) Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer. Oncol. Rep. 32(1), 277–285. doi: 10.3892/or.2014.3208
  11. Diaz-Lagares A., Crujeiras A.B., Lopez-Serra P., Soler M., Setien F., Goyal A., Sandoval J., Hashimoto Y., Martinez-Cardús A., Gomez A., Heyn H., Moutinho C., Espada J., Vidal A., Paúles M., Galán M., Sala N., Akiyama Y., Martínez-Iniesta M., Farré L., Villanueva A., Gross M., Diederichs S., Guil S., Esteller M. (2016) Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc. Natl. Acad. Sci. USA. 113(47), E7535–E7544. doi: 10.1073/pnas.1608585113
  12. Gokulnath P., de Cristofaro T., Manipur I., Di Palma T., Soriano A.A., Guarracino M.R., Zannini M. (2020) Long non-coding RNA HAND2-AS1 acts as a tumor suppressor in high-grade serous ovarian carcinoma. Int. J. Mol. Sci. 21(11), 4059. doi: 10.3390/ijms21114059
  13. Abildgaard C., do Canto L.M., Rainho C.A., Marchi F.A., Calanca N., Waldstrøm M., Steffensen K.D., Rogatto S.R. (2022) The long non-coding RNA SNHG12 as a mediator of carboplatin resistance in ovarian cancer via epigenetic mechanisms. Cancers (Basel). 14(7), 1664. doi: 10.3390/cancers14071664
  14. Бурденный А.М., Филиппова Е.А., Иванова Н.А., Лукина С.С., Пронина И.В., Логинов В.И., Фридман М.В., Казубская Т.П., Уткин Д.О., Брага Э.А., Кушлинский Н.Е. (2021) Гиперметилирование генов новых длинных некодирующих РНК в опухолях яичников и метастазах: двойственный эффект. Бюлл. Эксп. Биол. Мед.171(3), 370–374. doi: 10.1007/s10517-021-05230-3
  15. World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 310(20), 2191–2194. doi: 10.1001/jama.2013.281053
  16. (2017) The TNM Classification of Malignant Tumours, 8th ed. Eds Brierley J.D., Gospodarowicz M.K., Wittekind C. Oxford: Wiley-Blackwell.
  17. (2014) WHO Classification of Tumours of Female Reproductive Organs, 4th ed. Eds Kurman R.J., Carcangiu M.L., Herrington C.S., Young R.H. Lyon: IARC Press.
  18. Pronina I.V., Loginov V.I., Burdennyy A.M., Fridman M.V., Senchenko V.N., Kazubskaya T.P., Kushlinskii N.E., Dmitriev A.A., Braga E.A. (2017) DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Gene. 604, 1–8. doi: 10.1016/j.gene.2016.12.018
  19. van Hoesel A.Q., Sato Y., Elashoff D.A., Turner R.R., Giuliano A.E., Shamonki J.M., Kuppen P.J., van de Velde C.J., Hoon D.S. (2013) Assessment of DNA methylation status in early stages of breast cancer development. Br.J. Cancer. 108, 2033–2038. doi: 10.1038/bjc.2013.136
  20. Loginov V.I., Pronina I.V., Filippova E.A., Burdennyy A.M., Lukina S.S., Kazubskaya T.P., Uroshlev L.A., Fridman M.V., Brovkina O.I., Apanovich N.V., Karpukhin A.V., Stilidi I.S., Kushlinskii N.E., Dmitriev A.A., Braga E.A. (2022) Aberrant methylation of 20 miRNA genes specifically involved in various steps of ovarian carcinoma spread: from primary tumors to peritoneal macroscopic metastases. Int. J. Mol. Sci. 23(3), 1300. doi: 10.3390/ijms23031300
  21. Ahlgren U., Jonsson J., Jonsson L., Simu K., Edlund H. (1998) Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 12(12), 1763–1768. doi: 10.1101/gad.12.12.1763
  22. Ebrahim N., Shakirova K., Dashinimaev E. (2022) PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front. Mol. Biosci. 9, 1091757. doi: 10.3389/fmolb.2022.1091757
  23. Kim-Wanner S.Z., Assenov Y., Nair M.B., Weichenhan D., Benner A., Becker N., Landwehr K., Kuner R., Sültmann H., Esteller M., Koch I., Lindner M., Meister M., Thomas M., Bieg M., Klingmüller U., Schlesner M., Warth A., Brors B., Seifried E., Bönig H., Plass C., Risch A., Muley T. (2020) Genome-wide DNA methylation profiling in early stage I lung adenocarcinoma reveals predictive aberrant methylation in the promoter region of the long noncoding RNA PLUT: an exploratory study. J. Thorac. Oncol. 15(8), 1338–1350. doi: 10.1016/j.jtho.2020.03.023
  24. Zimta A.A., Tigu A.B., Braicu C., Stefan C., Ionescu C., Berindan-Neagoe I. (2020) An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front. Oncol. 10, 389. doi: 10.3389/fonc.2020.00389
  25. Wang S., Jiang J., Wang Z., Xie Y., Wu X. (2017) Long non-coding RNA SNHG1 is an unfavorable prognostic factor and promotes cell proliferation and migration by Wnt/β-catenin pathway in epithelial ovarian cancer. Int. J. Clin. Exp. Pathol. 10(9), 9284–9292.
  26. Wu Y., Zhu B., Yan Y., Bai S., Kang H., Zhang J., Ma W., Gao Y., Hui B., Li R., Zhang X., Ren J. (2021) Long non-coding RNA SNHG1 stimulates ovarian cancer progression by modulating expression of miR-454 and ZEB1. Mol. Oncol. 15(5), 1584–1596. doi: 10.1002/1878-0261.12932
  27. Su M., Huang P., Li Q. (2023) Long noncoding RNA SNHG6 promotes the malignant phenotypes of ovarian cancer cells via miR-543/YAP1 pathway. Heliyon. 9(5), e16291. doi: 10.1016/j.heliyon.2023.e16291
  28. Sun D., Fan X.H. (2019) LncRNA SNHG12 accelerates the progression of ovarian cancer via absorbing miRNA-129 to upregulate SOX4. Eur. Rev. Med. Pharmacol. Sci. 23(6), 2345–2352. doi: 10.26355/eurrev_201903_17378
  29. Tam W.L., Weinberg R.A. (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 19(11), 1438–1449. doi: 10.1038/nm.3336
  30. Харченко Е.П., Соловьев И.А. (2016) Метастазирование и раковая спячка. Онкология. Журнал им. П.А. Герцена. 5(5), 72–77. https://doi.org/10.17116/onkolog20165572-77
  31. Kretz M., Siprashvili Z., Chu C., Webster D.E., Zehnder A., Qu K., Lee C.S., Flockhart R.J., Groff A.F., Chow J., Johnston D., Kim G.E., Spitale R.C., Flynn R.A., Zheng G.X., Aiyer S., Raj A., Rinn J.L., Chang H.Y., Khavari P.A. (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 493(7431), 231–235. doi: 10.1038/nature11661
  32. Omote N., Sakamoto K., Li Q., Schupp J.C., Adams T., Ahangari F., Chioccioli M., DeIuliis G., Hashimoto N., Hasegawa Y., Kaminski N. (2021) Long noncoding RNA TINCR is a novel regulator of human bronchial epithelial cell differentiation state. Physiol. Rep. 9(3), e14727. doi: 10.14814/phy2.14727
  33. Zheng Z.Q., Li Z.X., Guan J.L., Liu X., Li J.Y., Chen Y., Lin L., Kou J., Lv J.W., Zhang L.L., Zhou G.Q., Liu R.Q., Chen F., He X.J., Li Y.Q., Li F., Xu S.S., Ma J., Liu N., Sun Y. (2020) Long noncoding RNA TINCR-mediated regulation of acetyl-CoA metabolism promotes nasopharyngeal carcinoma progression and chemoresistance. Cancer Res. 80(23), 5174–5188. doi: 10.1158/0008-5472.CAN-19-3626
  34. Ghafouri-Fard S., Dashti S., Taheri M., Omrani M.D. (2020) TINCR: an lncRNA with dual functions in the carcinogenesis process. Noncoding RNA Res. 5(3), 109–115. doi: 10.1016/j.ncrna.2020.06.003
  35. Eckhart L., Lachner J., Tschachler E., Rice R.H. (2020) TINCR is not a non-coding RNA but encodes a protein component of cornified epidermal keratinocytes. Exp. Dermatol. 29(4), 376–379. doi: 10.1111/exd.14083
  36. Morgado-Palacin L., Brown J.A., Martinez T.F., Garcia-Pedrero J.M., Forouhar F., Quinn S.A., Reglero C., Vaughan J., Heydary Y.H., Donaldson C., Rodriguez-Perales S., Allonca E., Granda-Diaz R., Fernandez A.F., Fraga M.F., Kim A.L., Santos-Juanes J., Owens D.M., Rodrigo J.P., Saghatelian A., Ferrando A.A. (2023) The TINCR ubiquitin-like microprotein is a tumor suppressor in squamous cell carcinoma. Nat. Commun. 14(1), 1328. doi: 10.1038/s41467-023-36713-8
  37. Sigin V.O., Kalinkin A.I., Nikolaeva A.F., Ignatova E.O., Kuznetsova E.B., Chesnokova G.G., Litviakov N.V., Tsyganov M.M., Ibragimova M.K., Vinogradov I.I., Vinogradov M.I., Vinogradov I.Y., Zaletaev D.V., Nemtsova M.V., Kutsev S.I., Tanas A.S., Strelnikov V.V. (2023) DNA methylation and prospects for predicting the therapeutic effect of neoadjuvant chemotherapy for triple-negative and luminal B breast cancer. Cancers (Basel). 15(5), 1630. doi: 10.3390/cancers15051630
  38. Sun X., Yi J., Yang J., Han Y., Qian X., Liu Y., Li J., Lu B., Zhang J., Pan X., Liu Y., Liang M., Chen E., Liu P., Lu Y. (2021) An integrated epigenomic-transcriptomic landscape of lung cancer reveals novel methylation driver genes of diagnostic and therapeutic relevance. Theranostics. 11(11), 5346–5364. doi: 10.7150/thno.58385
  39. Teschendorff A.E., Lee S.H., Jones A., Fiegl H., Kalwa M., Wagner W., Chindera K., Evans I., Dubeau L., Orjalo A., Horlings H.M., Niederreiter L., Kaser A., Yang W., Goode E.L., Fridley B.L., Jenner R.G., Berns E.M., Wik E., Salvesen H.B., Wisman G.B., van der Zee A.G., Davidson B., Trope C.G., Lambrechts S., Vergote I., Calvert H., Jacobs I.J., Widschwendter M. (2015) HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med. 7, 108. doi: 10.1186/s13073-015-0233-4
  40. Ruiz-Bañobre J., Rodriguez-Casanova A., Costa-Fraga N., Bao-Caamano A., Alvarez-Castro A., Carreras-Presas M., Brozos-Vazquez E., Vidal-Insua Y., Vazquez-Rivera F., Candamio-Folgar S., Mosquera-Presedo M., Lago-Lestón R.M., Muinelo-Romay L., Vázquez-Bueno J.Á., Sanz-Pamplona R., Moreno V., Goel A., Castillo L., Martin A.C., Arroyo R., Esteller M., Crujeiras A.B., López-López R., Díaz-Lagares A. (2022) Noninvasive early detection of colorectal cancer by hypermethylation of the LINC00473 promoter in plasma cell-free DNA. Clin. Epigenetics. 14(1), 86. doi: 10.1186/s13148-022-01302-x
  41. Hu D., Lou X., Meng N., Li Z., Teng Y., Zou Y., Wang F. (2021) Peripheral blood-based DNA methylation of long non-coding RNA H19 and metastasis-associated lung adenocarcinoma transcript 1 promoters are potential non-invasive biomarkers for gastric cancer detection. Cancer Control. 28, 10732748211043667. doi: 10.1177/10732748211043667

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of lncRNA gene methylation levels in OC samples and in paired conditionally normal samples: PLUT, SNHG1, SNHG12 (93 vs. 75), SNHG6, TINCR (122 vs. 105). The upper and lower boundaries of the rectangles in the diagrams correspond to Q1 and Q3 (50% of the values ​​fall inside the rectangle). The line inside the rectangle corresponds to the median. The lines above and below the rectangles mark the “fence”, located at a distance of 1.5 interquartile distances (Q1–Q3) from the lower and upper boundaries of the “box”.

Download (50KB)
3. Fig. 2. Increased methylation levels of the SNHG6 and SNHG12 lncRNA genes in late stages of OC (III, IV, 77 samples) compared to early stages of OC (I–II, 45 samples) (a); and the SNHG6 and TINCR lncRNA genes with increasing malignancy grade (G1–G2–G3) (b); the nonparametric Kruskal–Wallis test was used to compare the three groups.

Download (34KB)
4. Fig. 3. The relationship between the increased methylation levels of the SNHG6 and TINCR lncRNA genes in primary OC samples with metastases of all types, including distant hematogenous, lymphogenous, and peritoneal (a), and the SNHG6 and SNHG12 genes with the presence of lymphogenous metastases (b). A decrease in the SNHG12 methylation level in macroscopic peritoneal metastases relative to paired primary tumors (c). The nonparametric Mann–Whitney test was used.

Download (44KB)
5. Fig. 4. Analysis of the expression levels of the lncRNA genes SNHG6, SNHG12 (30 paired OC samples) and TINCR (69 paired OC samples) by quantitative PCR.

Download (14KB)
6. Fig. 5. Statistically significant negative correlation between changes in methylation levels and expression of the lncRNA genes SNHG6 and TINCR in the total samples (30 and 69, respectively) of OC. Spearman's correlation coefficient (rₛ) was used.

Download (34KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».