Metabolic Stress of Red Blood Cells Induces Hemoglobin Glutathionylation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Metabolic stress caused by a lack of glucose significantly affects the state of red blood cells, where glycolysis is the main pathway for the production of ATP. Hypoglycemia can be both physiological (occurring during fasting and heavy physical exertion) and pathological (accompanying a number of diseases, such as diabetes mellitus). In this study, we have characterized the state of isolated erythrocytes under metabolic stress caused by the absence of glucose. It was established that 24 h of incubation of the erythrocytes in a glucose-free medium simulating blood plasma led to a twofold decrease in the ATP level into them. Besides, the cell sizes as well as intracellular sodium concentration were increased. These findings could be the result of a disruption in ion transporters` functioning because of a decrease in the ATP level. The calcium level remained unchanged. With a lack of glucose in the medium of isolated erythrocytes, there was no increase in ROS and significant change in the level of nitric oxide, while the level of the main low-molecular weight thiol of cells, glutathione (GSH), decreased by almost 2 times. It was found that the metabolic stress of isolated red blood cells induced hemoglobin glutathionylation despite the absence of ROS growth. The reason was the lack of ATP, which led to a decrease in the level of GSH because of the inhibition of its synthesis and probably, by decrease in the NADPH level required for glutathione (GSSG) reduction and protein deglutathionylation. Thus, erythrocyte metabolic stress induced hemoglobin glutathionylation, which is not associated with an increase in ROS. This may have an important physiological significance, since glutathionylation of hemoglobin changes its affinity for oxygen.

Авторлар туралы

P. Zaripov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Faculty of Biology, Lomonosov Moscow State University

Email: irina-pva@mail.ru
Russia, 119991, Moscow; Russia, 119234, Moscow

Iu. Kuleshova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: irina-pva@mail.ru
Russia, 119991, Moscow

Yu. Poluektov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation

Email: irina-pva@mail.ru
Russia, 119991, Moscow; Russia, 125047, Moscow

S. Sidorenko

Faculty of Biology, Lomonosov Moscow State University

Email: irina-pva@mail.ru
Russia, 119234, Moscow

O. Kvan

Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation

Email: irina-pva@mail.ru
Russia, 125047, Moscow

G. Maksimov

Faculty of Biology, Lomonosov Moscow State University

Email: irina-pva@mail.ru
Russia, 119234, Moscow

V. Mitkevich

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: irina-pva@mail.ru
Russia, 119991, Moscow

A. Makarov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: irina-pva@mail.ru
Russia, 119991, Moscow

I. Petrushanko

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: irina-pva@mail.ru
Russia, 119991, Moscow

Әдебиет тізімі

  1. Franco R.S. (2012) Measurement of red cell lifespan and aging. Transfus. Med. Hemotherapy. 39, 302–307. https://doi.org/10.1159/000342232
  2. Moura P.L., Hawley B.R., Mankelow T.J., Griffiths R.E., Dobbe J.G.G., Streekstra G.J., Anstee D.J., Satchwell T.J., Toye A.M. (2018) Non-muscle myosin II drives vesicle loss during human reticulocyte maturation. Haematologica. 103, 1997–2007. https://doi.org/10.3324/haematol.2018.199083
  3. Ovchynnikova E., Aglialoro F., Von Lindern M., Van Den Akker E. (2018) The shape shifting story of reticulocyte maturation. Front. Physiol. 9, 829. https://doi.org/10.3389/fphys.2018.00829
  4. Mohanty J.G., Nagababu E., Rifkind J.M. (2014) Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 5, 84. https://doi.org/10.3389/fphys.2014.00084
  5. Tang H., Ho H., Wu P., Chen S., Kuypers F.A., Cheng M., Chiu D.T. (2015) Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance. Antioxid. Redox Signal. 22, 744–759. https://doi.org/10.1089/ars.2014.6142
  6. Mamillapalli C., Tentu R., Jain N.K., Bhandari R. (2019) COPD and type 2 diabetes. Curr. Respir. Med. Rev. 15, 112–119. https://doi.org/10.2174/1573398X15666190211155640
  7. Vasileiadis I., Alevrakis E., Ampelioti S., Vagionas D., Rovina N., Koutsoukou A. (2019) Acid-base disturbances in patients with asthma: a literature review and comments on their pathophysiology. J. Clin. Med. 8, 563, https://doi.org/10.3390/jcm8040563
  8. Sircar M., Bhatia A., Munshi M. (2016) Review of hypoglycemia in the older adult: clinical implications and management. Can. J. Diabetes. 40, 66–72. https://doi.org/10.1016/j.jcjd.2015.10.004
  9. UK Hypoglycaemia study group (2007) Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia. 50, 1140–1147. https://doi.org/10.1007/s00125-007-0599-y
  10. van Wijk R., van Solinge W.W. (2005) The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood. 106, 4034–4042. https://doi.org/10.1182/blood-2005-04-1622
  11. Pandey K.B., Rizvi S.I. (2011) Biomarkers of oxidative stress in red blood cells. Biomed. Pap. 155, 131–136. https://doi.org/10.5507/bp.2011.027
  12. Miwa S. (1983) Hereditary disorders of red cell enzymes in the embden-meyerhof pathway. Am. J. Hematol. 14, 381–391. https://doi.org/10.1002/ajh.2830140410
  13. Koralkova P., van Solinge W.W., van Wijk R. (2014) Rare hereditary red blood cell enzymopathies associated with hemolytic anemia ‒ pathophysiology, clinical aspects, and laboratory diagnosis. Int. J. Lab. Hematol. 36, 388–397. https://doi.org/10.1111/ijlh.12223
  14. Lang F., Abed M., Lang E., Föller M. (2014) Oxidative stress and suicidal erythrocyte death. Antioxid. Redox Signal. 21, 138–153. https://doi.org/10.1089/ars.2013.5747
  15. Gilbert H.F. (2006) Molecular and cellular aspects of thiol-disulfide exchange. Adv. Enzymol. Relat. Areas Mol. Biol. 63, 69–172.
  16. Poluektov Y.M., Petrushanko I.Yu., Undrovinas N.A., Lakunina V.A., Khapchaev A.Y., Kapelko V.I., Abramov A.A., Lakomkin V.L., Novikov M.S., Shirinsky V.P. (2019) Glutathione-related substances maintain cardiomyocyte contractile function in hypoxic conditions. Sci. Rep. 9, 4872. https://doi.org/10.1038/s41598-019-41266-2
  17. Mieyal J.J., Gallogly M.M., Qanungo S., Sabens E.A., Shelton M.D. (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal. 10, 1941–1988. https://doi.org/10.1089/ars.2008.2089
  18. Petrushanko I.Yu., Yakushev S., Mitkevich V.A., Kamanina Y.V., Ziganshin R.H., Meng X., Anashkina A.A., Makhro A., Lopina O.D., Gassmann M. (2012) S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity. J. Biol. Chem. 287, 32195–32205. https://doi.org/10.1074/jbc.M112.391094
  19. Giustarini D., Dalle-Donne I., Milzani A., Braconi D., Santucci A., Rossi R. (2019) Membrane skeletal protein S-glutathionylation in human red blood cells as index of oxidative stress. Chem. Res. Toxicol. 32, 1096–1102. https://doi.org/10.1021/acs.chemrestox.8b00408
  20. Brinkmann C., Neumann E., Blossfeld J., Frese S., Orthmann P., Montiel G., Bloch W., Brixius K. (2011) Influence of glycemic status and physical fitness on oxidative stress and the peroxiredoxin system in the erythrocytes of non-insulin-dependent type 2 diabetic men. Exp. Clin. Endocrinol. Diabetes. 119, 559–564. https://doi.org/10.1055/s-0031-1279712
  21. Yousefzade G., Nakhaee A. (2012) Insulin-induced hypoglycemia and stress oxidative state in healthy people. Acta Diabetol. 49, 81–85. https://doi.org/10.1007/s00592-011-0311-z
  22. Pompeo G., Girasole M., Cricenti A., Boumis G., Bellelli A., Amiconi S. (2010) Erythrocyte death in vitro ind-uced by starvation in the absence of Ca2+. Biochim. Biophys. Acta. 1798, 1047–1055. https://doi.org/10.1016/j.bbamem.2010.02.002
  23. Nemkov T., Qadri S.M., Sheffield W.P., D’Alessandro A. (2020) Decoding the metabolic landscape of pathophysiological stress-induced cell death in anucleate red blood cells. Blood Transfus. 130, 130‒142. https://doi.org/10.2450/2020.0256-19
  24. Van Cromvoirt A.M., Fenk S., Sadafi A., Melnikova E.V., Lagutkin D.A., Dey K., Petrushanko I.Yu., Hegemann I., Goede J.S., Bogdanova A. (2021) Donor age and red cell age contribute to the variance in lorrca indices in healthy donors for next generation ektacytometry: a pilot study. Front. Physiol. 12, 639722. https://doi.org/10.3389/fphys.2021.639722
  25. Petrushanko I., Bogdanov N., Bulygina E., Grenacher B., Leinsoo T., Boldyrev A., Gassmann M., Bogdanova A. (2006) Na-K-ATPase in rat cerebellar granule cells is redox sensitive. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, 916–925. https://doi.org/10.1152/ajpregu.00038.2005
  26. Petrushanko I.Yu., Bogdanov N.B., Lapina N., Boldyrev A.A., Gassmann M., Bogdanova A.Yu. (2007) Oxygen-induced regulation of Na/K ATPase in cerebellar granule cells. J. Gen. Physiol. 130, 389–398. https://doi.org/10.1085/jgp.200709783
  27. Mitkevich V.A., Kretova O.V., Petrushanko I.Yu., Burnysheva K.M., Sosin D.V., Simonenko O.V., Ilinskaya O.N., Tchurikov N.A., Makarov A.A. (2013) Ribonuclease binase apoptotic signature in leukemic kasumi-1 cells. Biochimie. 95, 1344–1349. https://doi.org/10.1016/j.biochi.2013.02.016
  28. Yamamoto A., Saito N., Yamauchi Y., Takeda M., Ueki S., Itoga M., Kojima K., Kayaba H. (2014) Flow cytometric analysis of red blood cell osmotic fragility. SLAS Technol. 19, 483–487. https://doi.org/10.1177/2211068214532254
  29. Slatinskaya O.V., Zaripov P.I., Brazhe N.A., Petrushanko I.Yu., Maksimov G.V. (2022) Changes in the conformation and distribution of hemoglobin in the erythrocyte upon inhibition of Na+/K+-ATPase activity. Biophysics. 67, 726–733. https://doi.org/10.1134/S0006350922050189
  30. Makhro A., Huisjes R., Verhagen L.P., Mañú-Pereira M. del M., Llaudet-Planas E., Petkova-Kirova P., Wang J., Eichler H., Bogdanova A., van Wijk R. (2016) Red cell properties after different modes of blood transportation. Front. Physiol. 7, 288. https://doi.org/10.3389/fphys.2016.00288
  31. Fedorov D.A., Sidorenko S.V., Yusipovich A.I., Parshina E.Y., Tverskoi A.M., Abramicheva P.A., Maksimov G.V., Orlov S.N., Lopina O.D., Klimanova E.A. (2021) N/ imbalance contributes to gene expression in endothelial cells exposed to elevated NaCl. Heliyon. 7, e08088. https://doi.org/10.1016/j.heliyon.2021.e0808810.1016/j.heliyon.2021.e08088
  32. Zhang R., Xiang Y., Ran Q., Deng X., Xiao Y., Xiang L., Li Z. (2014) Involvement of calcium, reactive oxygen species, and ATP in hexavalent chromium-induced damage in red blood cells. Cell. Physiol. Biochem. 34, 1780–1791. https://doi.org/10.1159/000366378
  33. Suh S., Kim J.H. (2015) Glycemic variability: how do we measure it and why is it important? Diabetes Metab. J. 39, 273‒282. https://doi.org/10.4093/dmj.2015.39.4.273
  34. Cryer P.E., Axelrod L., Grossman A.B., Heller S.R., Montori V.M., Seaquist E.R., Service F.J. (2009) Evaluation and management of adult hypoglycemic disorders: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 94, 709–728. https://doi.org/10.1210/jc.2008-1410
  35. Szadkowska A., Czyżewska K., Pietrzak I., Mianowska B., Jarosz-Chobot P., Myśliwiec M. (2018) Hypoglycaemia unawareness in patients with type 1 diabetes. Pediatr. Endocrinol. Diabetes Metab. 24, 126–134. https://doi.org/10.5114/pedm.2018.80994
  36. Silbert R., Salcido-Montenegro A., Rodriguez-Gutierrez R., Katabi A., McCoy R.G. (2018) Hypoglycemia among patients with type 2 diabetes: epidemiology, risk factors, and prevention strategies. Curr. Diab. Rep. 18, 53. https://doi.org/10.1007/s11892-018-1018-0
  37. Vega-Cano S., Cordero-Vázquez E., Mestre-Torres J. (2021) Hipoglucemia como forma de presentación de infiltración hipofisaria por un linfoma. Med. Clínica. 156, 362–363. https://doi.org/10.1016/j.medcli.2020.01.040
  38. Wang J., Zhu C.-K., Yu J.-Q., Tan R., Yang P.-L. (2021) Hypoglycemia and mortality in sepsis patients: a systematic review and meta-analysis. Heart Lung. 50, 933–940. https://doi.org/10.1016/j.hrtlng.2021.07.017
  39. Salehi M., Vella A., McLaughlin T., Patti M.-E. (2018) Hypoglycemia after gastric bypass surgery: current concepts and controversies. J. Clin. Endocrinol. Metab. 103, 2815–2826. https://doi.org/10.1210/jc.2018-00528
  40. Amiel S.A. (2021) The consequences of hypoglycaemia. Diabetologia. 64, 963–970. https://doi.org/10.1007/s00125-020-05366-3
  41. Papachristoforou E., Lambadiari V., Maratou E., Makrilakis K. (2020) Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J. Diabetes Res. 2020, 7489795. https://doi.org/10.1155/2020/7489795
  42. Rogers T.B., Lokuta A.J. (1994) Angiotensin II signal transduction pathways in the cardiovascular system. Trends Cardiovasc. Med. 4, 110–116. https://doi.org/10.1016/1050-1738(94)90062-0
  43. Kosower N.S., Zipser Y., Faltin Z. (1982) Membrane thiol-disulfide status in glucose-6-phosphate dehydrogenase deficient red cells. relationship to cellular glutathione. Biochim. Biophys. Acta. 691, 345–352. https://doi.org/10.1016/0005-2736(82)90424-2
  44. Craescu C.T., Poyart C., Schaefferll C., Garel M.-C., Kisterp J., Beuzard Y. (1986) Covalent binding of glutathione to hemoglobin. II. Functional consequences and structural changes reflected in NMR spectra. J. Biol. Chem. 261, 14710–14716.
  45. Metere A., Iorio E., Scorza G., Camerini S., Casella M., Crescenzi M., Minetti M., Pietraforte D. (2014) Carbon monoxide signaling in human red blood cells: evidence for pentose phosphate pathway activation and protein deglutathionylation. Antioxid. Redox Signal. 20, 403–416. https://doi.org/10.1089/ars.2012.5102
  46. Colombo G., Dalle-Donne I., Giustarini D., Gagliano N., Portinaro N., Colombo R., Rossi R., Milzani A. (2010) Cellular redox potential and hemoglobin S-glutathionylation in human and rat erythrocytes: a comparative study. Blood Cells. Mol. Dis. 44, 133–139. https://doi.org/10.1016/j.bcmd.2009.11.005
  47. Perutz M.F. (1970) Stereochemistry of cooperative effects in haemoglobin: haem–haem interaction and the problem of allostery. Nature. 228, 726–734. https://doi.org/10.1038/228726a0
  48. Rubino F.M. (2021) The redox potential of the β-93-cysteine thiol group in human hemoglobin estimated from in vitro oxidant challenge experiments. Molecules. 26, 2528. https://doi.org/10.3390/molecules26092528
  49. Fenk S., Melnikova E.V., Anashkina A.A., Poluektov Y.M., Zaripov P.I., Mitkevich V.A., Tkachev Y.V., Kaestner L., Minetti G., Mairbäurl H. (2022) Hemoglobin is an oxygen-dependent glutathione buffer adapting the intracellular reduced glutathione levels to oxygen availability. Redox Biol. 58, 102535. https://doi.org/10.1016/j.redox.2022.102535
  50. Chen H.-J.C., Lin W.-P., Chiu S.-D., Fan C.-H. (2014) Multistage mass spectrometric analysis of human hemoglobin glutathionylation: correlation with cigarette smoking. Chem. Res. Toxicol. 27, 864–872. https://doi.org/10.1021/tx5000359
  51. Collins J.-A., Rudenski A., Gibson J., Howard L., O’Driscoll R. (2015) Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve. Breathe (Sheff). 11, 194–201. https://doi.org/10.1183/20734735.001415
  52. Ghezzi P. (2013) Protein glutathionylation in health and disease. Biochim. Biophys. Acta. 1830, 3165–3172. https://doi.org/10.1016/j.bbagen.2013.02.009
  53. Radosinska J., Vrbjar N. (2021) Erythrocyte deformability and Na,K-ATPase activity in various pathophysiological situations and their protection by selected nutritional antioxidants in humans. Int. J. Mol. Sci. 22, 11 924. https://doi.org/10.3390/ijms222111924

Қосымша файлдар


© П.И. Зарипов, Ю.Д. Кулешова, Ю.М. Полуэктов, С.В. Сидоренко, О.К. Кван, Г.В. Максимов, В.А. Митькевич, А.А. Макаров, И.Ю. Петрушанко, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>