Neuronal Calcium Sensor 1: a Zinc/Redox-Dependent Protein of Nervous System Signaling Pathways

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Intracellular calcium signals play a key role in the regulation of nervous system structure and function. The control of neuronal excitability and plasticity by calcium ions underlies the mechanisms of higher nervous activity, and the mechanisms of this control are of particular interest to researchers. In recent decades, a family of highly specialized neuronal proteins that can translate the information contained in calcium signals into the regulation of channels, enzymes, receptors, and transcription factors has been described. The most abundant member of this family is neuronal calcium sensor-1 (NCS-1), which is intensively expressed in CNS neurons and controls such vital processes as neuronal growth and survival, reception, neurotransmission and synaptic plasticity. In addition to calcium ions, NCS-1 may bind intracellular ‘mobile’ zinc, increased concentration of which is a characteristic feature of cells under oxidative stress. Zinc coordination under these conditions stimulates NCS-1 oxidation to form a disulfide dimer (dNCS-1) with altered functional properties. The combined effect of mobile zinc and the increased redox potential of the medium can thus induce the aberrant NCS-1 activity involving signals for survival of neuronal cells or induction of their apoptosis and, as a consequence, the development of neurodegenerative processes. The review details the localization, regulation of expression, structure and molecular properties of NCS-1, as well as current data on its signaling activity in health and disease, including zinc-dependent redox-regulation cascades.

Sobre autores

V. Baksheeva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: zerni@belozersky.msu.ru
Russia, 119992, Moscow

A. Zamyatnin

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University; Scientific Center for Translation Medicine, Sirius University of Science and Technology; Institute of Molecular Medicine, Sechenov First Moscow State Medical University

Email: zerni@belozersky.msu.ru
Russia, 119992, Moscow; Russia, 119992, Moscow; Russia, 354340, Sochi; Russia, 119991, Moscow

E. Zernii

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: zerni@belozersky.msu.ru
Russia, 119992, Moscow

Bibliografia

  1. Pongs O., Krah-Jentgens I., Engelkamp D., Ferras A. (1991) Sequence and possible function of a novel Ca2+-binding protein encoded in the Shaker-locus of Drosophila. In: Novel Calcium-Binding Proteins: Fundamentals and Clinical Implications. Ed. Heizmann C.W. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 497‒503.
  2. Persechini A., Moncrief N.D., Kretsinger R.H. (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci. 12(11), 462‒467.
  3. Pongs O., Lindemeier J., Zhu X.R., Theil T., Engelkamp D., Krah-Jentgens I., Lambrecht H.G., Koch K.W., Schwemer J., Rivosecchi R., et al. (1993) Frequenin – a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron. 11(1), 15‒28.
  4. Kawamura S. (1994) Photoreceptor light-adaptation mediated by S-modulin, a member of a possible regulatory protein family of protein phosphorylation in signal transduction. Neurosci. Res. 20(4), 293‒298.
  5. De Castro E., Nef S., Fiumelli H., Lenz S.E., Kawamura S., Nef P. (1995) Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors. Biochem. Biophys. Res. Commun. 216(1), 133‒140.
  6. Olafsson P., Soares H.D., Herzog K.H., Wang T., Morgan J.I., Lu B. (1997) The Ca2+ binding protein, frequenin is a nervous system-specific protein in mouse preferentially localized in neurites. Brain Res. Mol. Brain Res. 44(1), 73‒82.
  7. Chen C., Yu L., Zhang P., Jiang J., Zhang Y., Chen X., Wu Q., Wu Q., Zhao S. (2002) Human neuronal calcium sensor-1 shows the highest expression level in cerebral cortex. Neurosci. Lett. 319(2), 67‒70.
  8. Blasiole B., Kabbani N., Boehmler W., Thisse B., Thisse C., Canfield V., Levenson R. (2005) Neuronal calcium sensor-1 gene ncs-1a is essential for semicircular canal formation in zebrafish inner ear. J. Neurobiol. 64(3), 285‒297.
  9. Msghina M., Govind C.K., Atwood H.L. (1998) Synaptic structure and transmitter release in crustacean phasic and tonic motor neurons. J. Neurosci. 18(4), 1374‒1382.
  10. Dyer J.R., Sossin W.S., Klein M. (1996) Cloning and characterization of aplycalcin and Aplysia neurocalcin, two new members of the calmodulin superfamily of small calcium-binding proteins. J. Neurochem. 67(3), 932‒942.
  11. Nef S., Fiumelli H., de Castro E., Raes M.B., Nef P. (1995) Identification of neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation. J. Recept. Signal. Transduct. Res. 15(1‒4), 365‒378.
  12. Olafsson P., Wang T., Lu B. (1995) Molecular cloning and functional characterization of the Xenopus Ca2+-binding protein frequenin. Proc. Natl. Acad. Sci. USA. 92(17), 8001‒8005.
  13. Hendricks K.B., Wang B.Q., Schnieders E.A., Thorner J. (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat. Cell Biol. 1(4), 234‒241.
  14. Hamasaki-Katagiri N., Molchanova T., Takeda K., Ames J.B. (2004) Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance. J. Biol. Chem. 279(13), 12 744‒12 754.
  15. Sanchez-Barrena M.J., Martinez-Ripoll M., Zhu J.K., Albert A. (2004) SOS3 (salt overly sensitive 3) from Arabidopsis thaliana: expression, purification, crystallization and preliminary X-ray analysis. Acta Crystallogr. D Biol. Crystallogr. 60(Pt. 7), 1272‒1274.
  16. Nagae M., Nozawa A., Koizumi N., Sano H., Hashimoto H., Sato M., Shimizu T. (2003) The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. J. Biol. Chem. 278(43), 42240‒42246.
  17. Strahl T., Grafelmann B., Dannenberg J., Thorner J., Pongs O. (2003) Conservation of regulatory function in calcium-binding proteins: human frequenin (neuronal calcium sensor-1) associates productively with yeast phosphatidylinositol 4-kinase isoform, Pik1. J. Biol. Chem. 278(49), 49589‒49599.
  18. Bourne Y., Dannenberg J., Pollmann V., Marchot P., Pongs O. (2001) Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J. Biol. Chem. 276(15), 11 949‒11 955.
  19. Magno L.A.V., Tenza-Ferrer H., Collodetti M., Nicolau E.S., Khlghatyan J., Del’Guidice T., Romano-Silva M.A., Beaulieu J.M. (2020) Contribution of neuronal calcium sensor 1 (Ncs-1) to anxiolytic-like and social behavior mediated by valproate and Gsk3 inhibition. Sci. Rep. 10(1), 4566.
  20. Grosshans H.K., Fischer T.T., Steinle J.A., Brill A.L., Ehrlich B.E. (2020) Neuronal calcium sensor 1 is up-regulated in response to stress to promote cell survival and motility in cancer cells. Mol. Oncol. 14(6), 1134‒1151.
  21. Uchida A., Seki N., Mizuno K., Misono S., Yamada Y., Kikkawa N., Sanada H., Kumamoto T., Suetsugu T., Inoue H. (2019) Involvement of dual-strand of the miR-144 duplex and their targets in the pathogenesis of lung squamous cell carcinoma. Cancer Sci. 110(1), 420‒432.
  22. Zhou H., Yang C., Bai F., Ma Z., Wang J., Wang F., Li F., Wang Q., Xiong L. (2017) Electroacupuncture alleviates brain damage through targeting of neuronal calcium sensor 1 by miR-191a-5p after ischemic stroke. Rejuvenation Res. 20(6), 492‒505.
  23. Gerhard D.S., Wagner L., Feingold E.A., Shenmen C.M., Grouse L.H., Schuler G., Klein S.L., Old S., Rasooly R., Good P., Guyer M., Peck A.M., Derge J.G., Lipman D., Collins F.S., Jang W., Sherry S., Feolo M., Misquitta L., Lee E., Rotmistrovsky K., Greenhut S.F., Schaefer C.F., Buetow K., Bonner T.I., Haussler D., Kent J., Kiekhaus M., Furey T., Brent M., Prange C., Schreiber K., Shapiro N., Bhat N.K., Hopkins R.F., Hsie F., Driscoll T., Soares M.B., Casavant T.L., Scheetz T.E., Brown-stein M.J., Usdin T.B., Toshiyuki S., Carninci P., Piao Y., Dudekula D.B., Ko M.S., Kawakami K., Suzuki Y., Sugano S., Gruber C.E., Smith M.R., Simmons B., Moore T., Waterman R., Johnson S.L., Ruan Y., Wei C.L., Mathavan S., Gunaratne P.H., Wu J., Garcia A.M., Hulyk S.W., Fuh E., Yuan Y., Sneed A., Kowis C., Hodgson A., Muzny D.M., McPherson J., Gibbs R.A., Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A., Whiting M., Madari A., Young A.C., Wetherby K.D., Granite S.J., Kwong P.N., Brinkley C.P., Pearson R.L., Bouffard G.G., Blakesly R.W., Green E.D., Dickson M.C., Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S., Griffith M., Griffith O.L., Krzywinski M.I., Liao N., Morin R., Palmquist D., Petrescu A.S., Skalska U., Smailus D.E., Stott J.M., Schnerch A., Schein J.E., Jones S.J., Holt R.A., Baross A., Marra M.A., Clifton S., Makowski K.A., Bosak S., Malek J., Team M.G.C.P. (2004) The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 14(10B), 2121‒2127.
  24. Wang B., Boeckel G.R., Huynh L., Nguyen L., Cao W., De La Cruz E.M., Kaftan E.J., Ehrlich B.E. (2016) Neuronal calcium sensor 1 has two variants with distinct calcium binding characteristics. PLoS One. 11(8), e0161414.
  25. Gierke P., Zhao C., Brackmann M., Linke B., Heinemann U., Braunewell K.H. (2004) Expression analysis of members of the neuronal calcium sensor protein family: combining bioinformatics and western blot analysis. Biochem. Biophys. Res. Commun. 323(1), 38‒43.
  26. Schaad N.C., De Castro E., Nef S., Hegi S., Hinrichsen R., Martone M.E., Ellisman M.H., Sikkink R., Rusnak F., Sygush J., Nef P. (1996) Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc. Natl. Acad. Sci. USA. 93(17), 9253‒9258.
  27. Pitt J.C., Lindemeier J., Habbes H.W., Veh R.W. (1998) Haptenylation of antibodies during affinity purification: a novel and convenient procedure to obtain labeled antibodies for quantification and double labeling. Histochem. Cell Biol. 110(3), 311‒322.
  28. Martone M.E., Edelmann V.M., Ellisman M.H., Nef P. (1999) Cellular and subcellular distribution of the calcium-binding protein NCS-1 in the central nervous system of the rat. Cell Tissue Res. 295(3), 395‒407.
  29. Paterlini M., Revilla V., Grant A.L., Wisden W. (2000) Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience. 99(2), 205‒216.
  30. Sage C., Venteo S., Jeromin A., Roder J., Dechesne C.J. (2000) Distribution of frequenin in the mouse inner ear during development, comparison with other calcium-binding proteins and synaptophysin. Hear Res. 150(1‒2), 70‒82.
  31. Treloar H.B., Uboha U., Jeromin A., Greer C.A. (2005) Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J. Comp. Neurol. 482(2), 201‒216.
  32. Kawasaki T., Nishio T., Kurosawa H., Roder J., Jeromin A. (2003) Spatiotemporal distribution of neuronal calcium sensor-1 in the developing rat spinal cord. J. Comp. Neurol. 460(4), 465‒475.
  33. Garcia N., Lanuza M.A., Besalduch N., Santafe M.M., Jeromin A., Tomas J. (2005) Localization of neuronal calcium sensor-1 at the adult and developing rat neuromuscular junction. J. Neurosci. Res. 82(1), 1‒9.
  34. Werle M.J., Roder J., Jeromin A. (2000) Expression of frequenin at the frog (Rana) neuromuscular junction, muscle spindle and nerve. Neurosci. Lett. 284(1‒2), 33‒36.
  35. Lourenssen S., Jeromin A., Roder J., Blennerhassett M.G. (2002) Intestinal inflammation modulates expression of the synaptic vesicle protein neuronal calcium sensor-1. Am. J. Physiol. Gastrointest. Liver Physiol. 282(6), G1097‒G1104.
  36. Averill S., Robson L.G., Jeromin A., Priestley J.V. (2004) Neuronal calcium sensor-1 is expressed by dorsal root ganglion cells, is axonally transported to central and peripheral terminals, and is concentrated at nodes. Neuroscience. 123(2), 419‒427.
  37. Taverna E., Francolini M., Jeromin A., Hilfiker S., Roder J., Rosa P. (2002) Neuronal calcium sensor 1 and phosphatidylinositol 4-OH kinase beta interact in neuronal cells and are translocated to membranes during nucleotide-evoked exocytosis. J. Cell Sci. 115(Pt. 20), 3909‒3922.
  38. Nakao S., Wakabayashi S., Nakamura T.Y. (2015) Stimulus-dependent regulation of nuclear Ca2+ signaling in cardiomyocytes: a role of neuronal calcium sensor-1. PloS One. 10(4), e0125050.
  39. Nakamura T.Y., Jeromin A., Mikoshiba K., Wakabayashi S. (2011) Neuronal calcium sensor-1 promotes immature heart function and hypertrophy by enhancing Ca2+ signals. Circ. Res. 109(5), 512‒523.
  40. Ratai O., Hermainski J., Ravichandran K., Pongs O. (2019) NCS-1 deficiency is associated with obesity and diabetes type 2 in mice. Front. Mol. Neurosci. 12, 78.
  41. Ng E., Varaschin R.K., Su P., Browne C.J., Hermainski J., Le Foll B., Pongs O., Liu F., Trudeau L.E., Roder J.C., Wong A.H. (2016) Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens. Behav. Brain Res. 301, 213‒225.
  42. Mun H.S., Saab B.J., Ng E., McGirr A., Lipina T.V., Gondo Y., Georgiou J., Roder J.C. (2015) Self-directed exploration provides a Ncs1-dependent learning bonus. Sci. Rep. 5, 17697.
  43. de Rezende V.B., Rosa D.V., Comim C.M., Magno L.A., Rodrigues A.L., Vidigal P., Jeromin A., Quevedo J., Romano-Silva M.A. (2014) NCS-1 deficiency causes anxiety and depressive-like behavior with impaired non-aversive memory in mice. Physiol. Behav. 130, 91‒98.
  44. Citri A., Malenka R.C. (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 33(1), 18‒41.
  45. Jinno S., Jeromin A., Roder J., Kosaka T. (2002) Immunocytochemical localization of neuronal calcium sensor-1 in the hippocampus and cerebellum of the mouse, with special reference to presynaptic terminals. Neuroscience. 113(2), 449‒461.
  46. Goncalves J.T., Schafer S.T., Gage F.H. (2016) Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 167(4), 897‒914.
  47. Genin A., Davis S., Meziane H., Doyere V., Jeromin A., Roder J., Mallet J., Laroche S. (2001) Regulated expression of the neuronal calcium sensor-1 gene during long-term potentiation in the dentate gyrus in vivo. Neuroscience. 106(3), 571‒577.
  48. Saab B.J., Georgiou J., Nath A., Lee F.J., Wang M., Michalon A., Liu F., Mansuy I.M., Roder J.C. (2009) NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory. Neuron. 63(5), 643‒656.
  49. Kesner R.P., Lee I., Gilbert P. (2004) A behavioral assessment of hippocampal function based on a subregional analysis. Rev. Neurosci. 15(5), 333‒351.
  50. Sippy T., Cruz-Martin A., Jeromin A., Schweizer F.E. (2003) Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat. Neurosci. 6(10), 1031‒1038.
  51. Zucker R.S. (2003) NCS-1 stirs somnolent synapses. Nat. Neurosci. 6(10), 1006‒1008.
  52. Jo J., Heon S., Kim M.J., Son G.H., Park Y., Henley J.M., Weiss J.L., Sheng M., Collingridge G.L., Cho K. (2008) Metabotropic glutamate receptor-mediated LTD involves two interacting Ca2+ sensors, NCS-1 and PICK1. Neuron. 60(6), 1095‒1111.
  53. Brackmann M., Zhao C., Kuhl D., Manahan-Vaughan D., Braunewell K.H. (2004) MGluRs regulate the expression of neuronal calcium sensor proteins NCS-1 and VILIP-1 and the immediate early gene arg3.1/arc in the hippocampus in vivo. Biochem. Biophys. Res. Commun. 322(3), 1073‒1079.
  54. Hanley J.G., Henley J.M. (2005) PICK1 is a calcium-sensor for NMDA-induced AMPA receptor trafficking. EMBO J. 24(18), 3266‒3278.
  55. Hansel C., Linden D.J., D’Angelo E. (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat. Neurosci. 4(5), 467‒475.
  56. Jinno S., Jeromin A., Roder J., Kosaka T. (2003) Compartmentation of the mouse cerebellar cortex by neuronal calcium sensor-1. J. Comp. Neurol. 458(4), 412‒424.
  57. Drumond L.E., Mourao F.A., Leite H.R., Abreu R.V., Reis H.J., Moraes M.F., Pereira G.S., Massensini A.R. (2012) Differential effects of swimming training on neuronal calcium sensor-1 expression in rat hippocampus/cortex and in object recognition memory tasks. Brain Res. Bull. 88(4), 385‒391.
  58. Nakamura T.Y., Nakao S., Nakajo Y., Takahashi J.C., Wakabayashi S., Yanamoto H. (2017) Possible signaling pathways mediating neuronal calcium sensor-1-dependent spatial learning and memory in mice. PLoS One. 12(1), e0170829.
  59. Nakamura T.Y., Sturm E., Pountney D.J., Orenzoff B., Artman M., Coetzee W.A. (2003) Developmental expression of NCS-1 (frequenin), a regulator of Kv4 K+ channels, in mouse heart. Pediatr. Res. 53(4), 554‒557.
  60. Bergmann M., Grabs D., Roder J., Rager G., Jeromin A. (2002) Differential expression of neuronal calcium sensor-1 in the developing chick retina. J. Comp. Neurol. 449(3), 231‒240.
  61. Reynolds A.J., Bartlett S.E., Morgans C. (2001). The distribution of neuronal calcium sensor-1 protein in the developing and adult rat retina. Neuroreport. 12(4), 725‒728.
  62. Chen X.L., Zhong Z.G., Yokoyama S., Bark C., Meister B., Berggren P.O., Roder J., Higashida H., Jeromin A. (2001) Overexpression of rat neuronal calcium sensor-1 in rodent NG108-15 cells enhances synapse formation and transmission. J. Physiol. 532(Pt. 3), 649‒659.
  63. Hui H., McHugh D., Hannan M., Zeng F., Xu S.Z., Khan S.U., Levenson R., Beech D.J., Weiss J.L. (2006) Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J. Physiol. 572(Pt. 1), 165‒172.
  64. Scalettar B.A., Rosa P., Taverna E., Francolini M., Tsuboi T., Terakawa S., Koizumi S., Roder J., Jeromin A. (2002). Neuronal calcium sensor-1 binds to regulated secretory organelles and functions in basal and stimulated exocytosis in PC12 cells. J. Cell Sci. 115(Pt. 11), 2399‒2412.
  65. Pan C.Y., Jeromin A., Lundstrom K., Yoo S.H., Roder J., Fox A.P. (2002) Alterations in exocytosis induced by neuronal Ca2+ sensor-1 in bovine chromaffin cells. J. Neurosci. 22(7), 2427‒2433.
  66. McFerran B.W., Graham M.E., Burgoyne R.D. (1998) Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J. Biol. Chem. 273(35), 22768‒22772.
  67. Guild S.B., Murray A.T., Wilson M.L., Wiegand U.K., Apps D.K., Jin Y., Rindler M., Roder J., Jeromin A. (2001). Over-expression of NCS-1 in AtT-20 cells affects ACTH secretion and storage. Mol. Cell Endocrinol. 184(1‒2), 51‒63.
  68. McFerran B.W., Weiss J.L., Burgoyne R.D. (1999) Neuronal Ca2+ sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca2+-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca2+ signal transduction. J. Biol. Chem. 274(42), 30258‒30265.
  69. Gromada J., Bark C., Smidt K., Efanov A.M., Janson J., Mandic S.A., Webb D.L., Zhang W., Meister B., Jeromin A., Berggren P.O. (2005) Neuronal calcium sensor-1 potentiates glucose-dependent exocytosis in pancreatic β cells through activation of phosphatidylinositol 4-kinase β. Proc. Natl. Acad. Sci. USA. 102(29), 10303‒10308.
  70. Kapp-Barnea Y., Melnikov S., Shefler I., Jeromin A., Sagi-Eisenberg R. (2003) Neuronal calcium sensor-1 and phosphatidylinositol 4-kinase β regulate IgE receptor-triggered exocytosis in cultured mast cells. J. Immunol. 171(10), 5320‒5327.
  71. Mora S., Durham P.L., Smith J.R., Russo A.F., Jeromin A., Pessin J.E. (2002) NCS-1 inhibits insulin-stimulated GLUT4 translocation in 3T3L1 adipocytes through a phosphatidylinositol 4-kinase-dependent pathway. J. Biol. Chem. 277(30), 27494‒27500.
  72. Zhao X., Varnai P., Tuymetova G., Balla A., Toth Z.E., Oker-Blom C., Roder J., Jeromin A., Balla T. (2001) Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase β stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J. Biol. Chem. 276(43), 40183‒40189.
  73. Weisz O.A., Gibson G.A., Leung S.M., Roder J., Jeromin A. (2000) Overexpression of frequenin, a modulator of phosphatidylinositol 4-kinase, inhibits biosynthetic delivery of an apical protein in polarized madin-darby canine kidney cells. J. Biol. Chem. 275(32), 24 341‒24 347.
  74. de Barry J., Janoshazi A., Dupont J.L., Procksch O., Chasserot-Golaz S., Jeromin A., Vitale N. (2006) Functional implication of neuronal calcium sensor-1 and phosphoinositol 4-kinase-β interaction in regulated exocytosis of PC12 cells. J. Biol. Chem. 281(26), 18098‒18111.
  75. Rajebhosale M., Greenwood S., Vidugiriene J., Jeromin A., Hilfiker S. (2003) Phosphatidylinositol 4‑OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells. J. Biol. Chem. 278(8), 6075‒6084.
  76. Koizumi S., Rosa P., Willars G.B., Challiss R.A., Taverna E., Francolini M., Bootman M.D., Lipp P., Inou-e K., Roder J., Jeromin A. (2002) Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J. Biol. Chem. 277(33), 30315‒30324.
  77. Bartlett S.E., Reynolds A.J., Weible M., Jeromin A., Roder J., Hendry I.A. (2000) PtdIns 4-kinaseβ and neuronal calcium sensor-1 co-localize but may not directly associate in mammalian neurons. J. Neurosci. Res. 62(2), 216‒224.
  78. Zheng Q., Bobich J.A., Vidugiriene J., McFadden S.C., Thomas F., Roder J., Jeromin A. (2005) Neuronal calcium sensor-1 facilitates neuronal exocytosis through phosphatidylinositol 4-kinase. J. Neurochem. 92(3), 442‒451.
  79. Uzureau S., Lecordier L., Uzureau P., Hennig D., Graversen J.H., Homble F., Mfutu P.E., Oliveira Arcolino F., Ramos A.R., La Rovere R.M., Luyten T., Vermeersch M., Tebabi P., Dieu M., Cuypers B., Deborggraeve S., Rabant M., Legendre C., Moestrup S.K., Levtchenko E., Bultynck G., Erneux C., Perez-Morga D., Pays E. (2020) APOL1 C‑terminal variants may trigger kidney disease through interference with APOL3 control of actomyosin. Cell Rep. 30(11), 3821‒3836.e13.
  80. Mikhaylova M., Reddy P.P., Munsch T., Landgraf P., Suman S.K., Smalla K.H., Gundelfinger E.D., Sharma Y., Kreutz M.R. (2009) Calneurons provide a calcium threshold for trans-Golgi network to plasma membrane trafficking. Proc. Natl. Acad. Sci. USA. 106(22), 9093‒9098.
  81. Petko J.A., Kabbani N., Frey C., Woll M., Hickey K., Craig M., Canfield V.A., Levenson R. (2009) Proteomic and functional analysis of NCS-1 binding proteins reveals novel signaling pathways required for inner ear development in zebrafish. BMC Neurosci. 10, 27.
  82. Haynes L.P., Sherwood M.W., Dolman N.J., Burgoyne R.D. (2007) Specificity, promiscuity and localization of ARF protein interactions with NCS-1 and phosphatidylinositol-4 kinase-III β. Traffic. 8(8), 1080‒1092.
  83. Haynes L.P., Fitzgerald D.J., Wareing B., O’Callaghan D.W., Morgan A., Burgoyne R.D. (2006) Analysis of the interacting partners of the neuronal calcium-binding proteins L-CaBP1, hippocalcin, NCS-1 and neurocalcin δ. Proteomics. 6(6), 1822‒1832.
  84. Haynes L.P., Thomas G.M., Burgoyne R.D. (2005) Interaction of neuronal calcium sensor-1 and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol 4-kinase β and trans-Golgi network-plasma membrane traffic. J. Biol. Chem. 280(7), 6047‒6054.
  85. Kabbani N., Negyessy L., Lin R., Goldman-Rakic P., Levenson R. (2002) Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J. Neurosci. 22(19), 8476‒8486.
  86. Bergson C., Levenson R., Goldman-Rakic P.S., Lidow M.S. (2003) Dopamine receptor-interacting proteins: the Ca2+ connection in dopamine signaling. Trends Pharmacol. Sci. 24(9), 486‒492.
  87. Evron T., Daigle T.L., Caron M.G. (2012) GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol. Sci. 33(3), 154‒164.
  88. Ferre S., Casado V., Devi L.A., Filizola M., Jockers R., Lohse M.J., Milligan G., Pin J.P., Guitart X. (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev. 66(2), 413‒434.
  89. Navarro G., Aguinaga D., Moreno E., Hradsky J., Reddy P.P., Cortes A., Mallol J., Casado V., Mikhaylova M., Kreutz M.R., Lluis C., Canela E.I., McCormick P.J., Ferre S. (2014) Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers. Chem. Biol. 21(11), 1546‒1556.
  90. Negyessy L., Goldman-Rakic P.S. (2005) Subcellular localization of the dopamine D2 receptor and coexistence with the calcium-binding protein neuronal calcium sensor-1 in the primate prefrontal cortex. J. Comp. Neurol. 488(4), 464‒475.
  91. Guimaraes M.M., Reis H.J., Guimaraes L.P., Carneiro D.S., Ribeiro F.M., Gomez M.V., Jeromin A., Romano-Silva M.A. (2009) Modulation of muscarinic signaling in PC12 cells overexpressing neuronal Ca2+ sensor-1 protein. Cell Mol. Biol. (Noisy-le-grand). 55(Suppl.), OL1138-50.
  92. Angelats E., Requesens M., Aguinaga D., Kreutz M.R., Franco R., Navarro G. (2018) Neuronal calcium and cAMP cross-talk mediated by cannabinoid CB1 receptor and EF-hand calcium sensor interactions. Front. Cell Dev. Biol. 6, 67.
  93. Navarro G., Hradsky J., Lluis C., Casado V., McCormick P.J., Kreutz M.R., Mikhaylova M. (2012) NCS-1 associates with adenosine A(2A) receptors and modulates receptor function. Front. Mol. Neurosci. 5, 53.
  94. Gurevich E.V., Tesmer J.J., Mushegian A., Gurevich V.V. (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol. Ther. 133(1), 40‒69.
  95. Pitcher J.A., Fredericks Z.L., Stone W.C., Premont R.T., Stoffel R.H., Koch W.J., Lefkowitz R.J. (1996) Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity. Location, structure, and regulation of the PIP2 binding site distinguishes the GRK subfamilies. J. Biol. Chem. 271(40), 24907‒24913.
  96. Serodio P., Rudy B. (1998) Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+ (A-type) currents in rat brain. J. Neurophysiol. 79(2), 1081‒1091.
  97. Nakamura T.Y., Pountney D.J., Ozaita A., Nandi S., Ueda S., Rudy B., Coetzee W.A. (2001) A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents. Proc. Natl. Acad. Sci. USA. 98(22), 12808‒12813.
  98. Guo W., Malin S.A., Johns D.C., Jeromin A., Nerbonne J.M. (2002) Modulation of Kv4-encoded K+ currents in the mammalian myocardium by neuronal calcium sensor-1. J. Biol. Chem. 277(29), 26436‒26443.
  99. Zaika O., Tolstykh G.P., Jaffe D.B., Shapiro M.S. (2007) Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J. Neurosci. 27(33), 8914‒8926.
  100. Winks J.S., Hughes S., Filippov A.K., Tatulian L., Abogadie F.C., Brown D.A., Marsh S.J. (2005) Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J. Neurosci. 25(13), 3400‒3413.
  101. Xiao L., Koopmann T.T., Ordog B., Postema P.G., Verkerk A.O., Iyer V., Sampson K.J., Boink G.J., Mamarbachi M.A., Varro A., Jordaens L., Res J., Kass R.S., Wilde A.A., Bezzina C.R., Nattel S. (2013) Unique cardiac Purkinje fiber transient outward current β-subunit composition: a potential molecular link to idiopathic ventricular fibrillation. Circ. Res. 112(10), 1310‒1322.
  102. Weiss J.L., Archer D.A., Burgoyne R.D. (2000) Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J. Biol. Chem. 275(51), 40082‒40087.
  103. Weiss J.L., Burgoyne R.D. (2001) Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinase. J. Biol. Chem. 276(48), 44804‒44811.
  104. Rousset M., Cens T., Gavarini S., Jeromin A., Charnet P. (2003) Down-regulation of voltage-gated Ca2+ channels by neuronal calcium sensor-1 is β subunit-specific. J. Biol. Chem. 278(9), 7019‒7026.
  105. Scott V.E., De Waard M., Liu H., Gurnett C.A., Venzke D.P., Lennon V.A., Campbell K.P. (1996) β subunit heterogeneity in N-type Ca2+ channels. J. Biol. Chem. 271(6), 3207‒3212.
  106. Tsujimoto T., Jeromin A., Saitoh N., Roder J.C., Takahashi T. (2002) Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science. 295(5563), 2276‒2279.
  107. Wang C.Y., Yang F., He X., Chow A., Du J., Russell J.T., Lu B. (2001) Ca2+-binding protein frequenin mediates GDNF-induced potentiation of Ca2+ channels and transmitter release. Neuron. 32(1), 99‒112.
  108. Yan J., Leal K., Magupalli V.G., Nanou E., Martinez G.Q., Scheuer T., Catterall W.A. (2014) Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation. Mol. Cell Neurosci. 63, 124‒131.
  109. Lian L.Y., Pandalaneni S.R., Todd P.A., Martin V.M., Burgoyne R.D., Haynes L.P. (2014) Demonstration of binding of neuronal calcium sensor-1 to the Cav2.1 P/Q-type calcium channel. Biochemistry. 53(38), 6052‒6062.
  110. Schlecker C., Boehmerle W., Jeromin A., DeGray B., Varshney A., Sharma Y., Szigeti-Buck K., Ehrlich B.E. (2006) Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. J. Clin. Invest. 116(6), 1668‒1674.
  111. Iketani M., Imaizumi C., Nakamura F., Jeromin A., Mikoshiba K., Goshima Y., Takei K. (2009) Regulation of neurite outgrowth mediated by neuronal calcium sensor-1 and inositol 1,4,5-trisphosphate receptor in nerve growth cones. Neuroscience. 161(3), 743‒752.
  112. De Raad S., Comte M., Nef P., Lenz S.E., Gundelfinger E.D., Cox J.A. (1995) Distribution pattern of three neural calcium-binding proteins (NCS-1, VILIP and recoverin) in chicken, bovine and rat retina. Histochem. J. 27(7), 524‒535.
  113. Vladimirov V.I., Zernii E.Y., Baksheeva V.E., Wimberg H., Kazakov A.S., Tikhomirova N.K., Nemashkalova E.L., Mitkevich V.A., Zamyatnin A.A., Jr., Lipkin V.M., Philippov P.P., Permyakov S.E., Senin I.I., Koch K.W., Zinchenko D.V. (2018) Photoreceptor calcium sensor proteins in detergent-resistant membrane rafts are regulated via binding to caveolin-1. Cell Calcium. 73, 55‒69.
  114. Baksheeva V.E., Nazipova A.A., Zinchenko D.V., Serebryakova M.V., Senin I.I., Permyakov S.E., Philippov P.P., Li Y., Zamyatnin A.A., Zernii E.Y., Aliev G. (2015) Ca2+-myristoyl switch in neuronal calcium sensor-1: a role of C-terminal segment. CNS Neurol. Disord. Drug. Targets. 14(4), 437‒451.
  115. Koch K.W., Dell’Orco D. (2015) Protein and signaling networks in vertebrate photoreceptor cells. Front. Mol. Neurosci. 8, 67.
  116. Pandalaneni S., Karuppiah V., Saleem M., Haynes L.P., Burgoyne R.D., Mayans O., Derrick J.P., Lian L.Y. (2015) Neuronal calcium sensor-1 binds the D2 dopamine receptor and G-protein-coupled receptor kinase 1 (GRK1) peptides using different modes of interactions. J. Biol. Chem. 290(30), 18744‒18756.
  117. Fik-Rymarkiewicz E., Duda T., Sharma R.K. (2006) Novel frequenin-modulated Ca2+-signaling membrane guanylate cyclase (ROS-GC) transduction pathway in bovine hippocampus. Mol. Cell Biochem. 291(1-2), 187‒204.
  118. Butler M.R., Ma H., Yang F., Belcher J., Le Y.Z., Mikoshiba K., Biel M., Michalakis S., Iuso A., Krizaj D., Ding X.Q. (2017) Endoplasmic reticulum (ER) Ca2+-channel activity contributes to ER stress and cone death in cyclic nucleotide-gated channel deficiency. J. Biol. Chem. 292(27), 11189‒11205.
  119. de Almeida Gomes C.P., Ventura A.L. (2004) Localization of G protein-coupled receptor kinases (GRKs) in the avian retina. Brain Res. Bull. 63(6), 499‒507.
  120. Ma H., Butler M.R., Thapa A., Belcher J., Yang F., Baehr W., Biel M., Michalakis S., Ding X.Q. (2015) cGMP/Protein kinase G signaling suppresses inositol 1,4,5-trisphosphate receptor phosphorylation and promotes endoplasmic reticulum stress in photoreceptors of cyclic nucleotide-gated channel-deficient mice. J. Biol. Chem. 290(34), 20880‒20892.
  121. Van Hook M.J., Nawy S., Thoreson W.B. (2019) Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog. Retin Eye Res. 72, 100760.
  122. Stella S.L., Jr., Bryson E.J., Thoreson W.B. (2002) A2 adenosine receptors inhibit calcium influx through L-type calcium channels in rod photoreceptors of the salamander retina. J. Neurophysiol. 87(1), 351‒360.
  123. Nakamura T.Y., Jeromin A., Smith G., Kurushima H., Koga H., Nakabeppu Y., Wakabayashi S., Nabekura J. (2006) Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. J. Cell Bio-l. 172(7), 1081‒1091.
  124. Soler R.M., Dolcet X., Encinas M., Egea J., Bayascas J.R., Comella J.X. (1999) Receptors of the glial cell line-derived neurotrophic factor family of neurotrophic factors signal cell survival through the phosphatidylinositol 3-kinase pathway in spinal cord motoneurons. J. Neurosci. 19(21), 9160‒9169.
  125. Yip P.K., Wong L.F., Sears T.A., Yanez-Munoz R.J., McMahon S.B. (2010) Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat. PLoS Biol. 8(6), e1000399.
  126. Angebault C., Fauconnier J., Patergnani S., Rieusset J., Danese A., Affortit C.A., Jagodzinska J., Megy C., Quiles M., Cazevieille C., Korchagina J., Bonnet-Wersinger D., Milea D., Hamel C., Pinton P., Thiry M., Lacampagne A., Delprat B., Delettre C. (2018) ER-mitochondria cross-talk is regulated by the Ca2+ sensor NCS1 and is impaired in Wolfram syndrome. Sci. Signal. 11(553), eaaq1380.
  127. Nguyen L.D., Fischer T.T., Abreu D., Arroyo A., Urano F., Ehrlich B.E. (2020) Calpain inhibitor and ibudilast rescue β cell functions in a cellular model of Wolfram syndrome. Proc. Natl. Acad. Sci. USA. 117(29), 17389‒17398.
  128. Wilkinson B.L., Jeromin A., Roder J., Hyson R.L. (2003) Activity-dependent regulation of the subcellular localization of neuronal calcium sensor-1 in the avian cochlear nucleus. Neuroscience. 117(4), 957‒964.
  129. Warchol M.E., Dallos P. (1990) Neural coding in the chick cochlear nucleus. J. Comp. Physiol. A. 166(5), 721‒734.
  130. Benkert J., Hess S., Roy S., Beccano-Kelly D., Wiederspohn N., Duda J., Simons C., Patil K., Gaifullina A., Mannal N., Dragicevic E., Spaich D., Muller S., Nemeth J., Hollmann H., Deuter N., Mousba Y., Kubisch C., Poetschke C., Striessnig J., Pongs O., Schneider T., Wade-Martins R., Patel S., Parlato R., Frank T., Kloppenburg P., Liss B. (2019) Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson’s disease. Nat. Commun. 10(1), 5094.
  131. Wang D., O’Halloran D., Goodman M.B. (2013) GCY-8, PDE-2, and NCS-1 are critical elements of the cGMP-dependent thermotransduction cascade in the AFD neurons responsible for C. elegans thermotaxis. J. Gen. Physiol. 142(4), 437‒449.
  132. Murakami H., Bessinger K., Hellmann J., Murakami S. (2005) Aging-dependent and -independent modulation of associative learning behavior by insulin/insulin-like growth factor-1 signal in Caenorhabditis elegans. J. Neurosci. 25(47), 10894‒10904.
  133. Nakamura T.Y., Nakao S., Wakabayashi S. (2016) Neuronal Ca2+ sensor-1 contributes to stress tolerance in cardiomyocytes via activation of mitochondrial detoxification pathways. J. Mol. Cell Cardiol. 99, 23‒34.
  134. Terao R., Honjo M., Ueta T., Obinata H., Izumi T., Kurano M., Yatomi Y., Koso H., Watanabe S., Aihara M. (2019) Light stress-induced increase of sphingosine 1-phosphate in photoreceptors and its relevance to retinal degeneration. Int. J. Mol. Sci. 20(15), 3670.
  135. McDougald D.S., Papp T.E., Zezulin A.U., Zhou S., Bennett J. (2019) AKT3 gene transfer promotes anabolic reprogramming and photoreceptor neuroprotection in a pre-clinical model of retinitis pigmentosa. Mol. Ther. 27(7), 1313‒1326.
  136. Braunewell K.H. (2005) The darker side of Ca2+ signaling by neuronal Ca2+-sensor proteins: from Alzheimer’s disease to cancer. Trends Pharmacol. Sci. 26(7), 345‒351.
  137. Bandura J., Feng Z.P. (2019) Current understanding of the role of neuronal calcium sensor 1 in neurological disorders. Mol. Neurobiol. 56(9), 6080‒6094.
  138. Boeckel G.R., Ehrlich B.E. (2018) NCS-1 is a regulator of calcium signaling in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 1865(11 Pt B), 1660‒1667.
  139. Koh P.O., Undie A.S., Kabbani N., Levenson R., Goldman-Rakic P.S., Lidow M.S. (2003) Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc. Natl. Acad. Sci. USA. 100(1), 313‒317.
  140. Bai J., He F., Novikova S.I., Undie A.S., Dracheva S., Haroutunian V., Lidow M.S. (2004) Abnormalities in the dopamine system in schizophrenia may lie in altered levels of dopamine receptor-interacting proteins. Biol. Psychiatry. 56(6), 427‒440.
  141. Souza B.R., Torres K.C., Miranda D.M., Motta B.S., Caetano F.S., Rosa D.V., Souza R.P., Giovani A., Jr., Carneiro D.S., Guimaraes M.M., Martins-Silva C., Reis H.J., Gomez M.V., Jeromin A., Romano-Silva M.A. (2011) Downregulation of the cAMP/PKA pathway in PC12 cells overexpressing NCS-1. Cell Mol. Neurobiol. 31(1), 135‒143.
  142. Souza B.R., Souza R.P., Rosa D.V., Guimaraes M.M., Correa H., Romano-Silva M.A. (2006) Dopaminergic intracellular signal integrating proteins: relevance to schizophrenia. Dialogues Clin. Neurosci. 8(1), 95‒100.
  143. Harvey A.G., Talbot L.S., Gershon A. (2009) Sleep disturbance in bipolar disorder across the lifespan. Clin. Psychol. (New York). 16(2), 256‒277.
  144. D’Onofrio S., Kezunovic N., Hyde J.R., Luster B., Messias E., Urbano F.J., Garcia-Rill E. (2015) Modulation of gamma oscillations in the pedunculopontine nucleus by neuronal calcium sensor protein-1: relevance to schizophrenia and bipolar disorder. J. Neurophysiol. 113(3), 709‒719.
  145. Garcia-Rill E., D’Onofrio S., Mahaffey S.C., Bisagno V., Urbano F.J. (2019) Bottom-up gamma and bipolar disorder, clinical and neuroepigenetic implications. Bipolar. Disord. 21(2), 108‒116.
  146. Jiang X., Lautermilch N.J., Watari H., Westenbroek R.E., Scheuer T., Catterall W.A. (2008) Modulation of CaV2.1 channels by Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain. Proc. Natl. Acad. Sci. USA. 105(1), 341‒346.
  147. D’Onofrio S., Hyde J., Garcia-Rill E. (2017) Interaction between neuronal calcium sensor protein 1 and lithium in pedunculopontine neurons. Physiol. Rep. 5(7), e13246.
  148. D’Onofrio S., Urbano F.J., Messias E., Garcia-Rill E. (2016) Lithium decreases the effects of neuronal calcium sensor protein 1 in pedunculopontine neurons. Physiol. Rep. 4(6), e12740.
  149. Souza B.R., Torres K.C., Miranda D.M., Motta B.S., Scotti-Muzzi E., Guimaraes M.M., Carneiro D.S., Rosa D.V., Souza R.P., Reis H.J., Jeromin A., Romano-Silva M.A. (2010) Lack of effects of typical and atypical antipsychotics in DARPP-32 and NCS-1 levels in PC12 cells overexpressing NCS-1. J. Negat. Results Biomed. 9, 4.
  150. Souza B.R., Motta B.S., Rosa D.V., Torres K.C., Castro A.A., Comim C.M., Sampaio A.M., Lima F.F., Jeromin A., Quevedo J., Romano-Silva M.A. (2008) DARPP-32 and NCS-1 expression is not altered in brains of rats treated with typical or atypical antipsychotics. Neurochem. Res. 33(3), 533‒538.
  151. Kabbani N., Levenson R. (2006) Antipsychotic-induced alterations in D2 dopamine receptor interacting proteins within the cortex. Neuroreport. 17(3), 299‒301.
  152. Muralidhar D., Kunjachen Jobby M., Jeromin A., Roder J., Thomas F., Sharma Y. (2004) Calcium and chlorpromazine binding to the EF-hand peptides of neuronal calcium sensor-1. Peptides. 25(6), 909‒917.
  153. Kabbani N., Woll M.P., Nordman J.C., Levenson R. (2012) Dopamine receptor interacting proteins: targeting neuronal calcium sensor-1/D2 dopamine receptor interaction for antipsychotic drug development. Curr. Drug Targets. 13(1), 72‒79.
  154. Nestler E.J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2(2), 119‒128.
  155. Chen X., Marrero H.G., Murphy R., Lin Y.J., Freedman J.E. (2000) Altered gating of opiate receptor-modulated K+ channels on amygdala neurons of morphine-dependent rats. Proc. Natl. Acad. Sci. USA. 97(26), 14692‒14696.
  156. Stefanski R., Ladenheim B., Lee S.H., Cadet J.L., Goldberg S.R. (1999) Neuroadaptations in the dopaminergic system after active self-administration but not after passive administration of methamphetamine. Eur. J. Pharmacol. 371(2‒3), 123‒135.
  157. Jenney C.B., Petko J., Ebersole B., Njatcha C.V., Uzamere T.O., Alexander D.N., Grigson P.S., Levenson R. (2016) Early avoidance of a heroin-paired taste-cue and subsequent addiction-like behavior in rats. Brain Res. Bull. 123, 61‒70.
  158. Rodriguez Parkitna J.M., Bilecki W., Mierzejewski P., Stefanski R., Ligeza A., Bargiela A., Ziolkowska B., Kostowski W., Przewlocki R. (2004) Effects of morphine on gene expression in the rat amygdala. J. Neurochem. 91(1), 38‒48.
  159. Dahl J.P., Jepson C., Levenson R., Wileyto E.P., Patterson F., Berrettini W.H., Lerman C. (2006) Interaction between variation in the D2 dopamine receptor (DRD2) and the neuronal calcium sensor-1 (FREQ) genes in predicting response to nicotine replacement therapy for tobacco dependence. Pharmacogenomics J. 6(3), 194‒199.
  160. Multani P.K., Clarke T.K., Narasimhan S., Ambrose-Lanci L., Kampman K.M., Pettinati H.M., Oslin D.W., O’Brien C.P., Berrettini W.H., Lohoff F.W. (2012) Neuronal calcium sensor-1 and cocaine addiction: a genetic association study in African-Americans and European Americans. Neurosci. Lett. 531(1), 46‒51.
  161. Bahi N., Friocourt G., Carrie A., Graham M.E., Weiss J.L., Chafey P., Fauchereau F., Burgoyne R.D., Chelly J. (2003) IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with Neuronal Calcium Sensor-1 and regulates exocytosis. Hum. Mol. Genet. 12(12), 1415‒1425.
  162. Pavlowsky A., Gianfelice A., Pallotto M., Zanchi A., Vara H., Khelfaoui M., Valnegri P., Rezai X., Bassani S., Brambilla D., Kumpost J., Blahos J., Roux M.J., Humeau Y., Chelly J., Passafaro M., Giustetto M., Billuart P., Sala C. (2010) A postsynaptic signaling pathway that may account for the cognitive defect due to IL1RAPL1 mutation. Curr. Biol. 20(2), 103‒115.
  163. Carrie A., Jun L., Bienvenu T., Vinet M.C., McDonell N., Couvert P., Zemni R., Cardona A., Van Buggenhout G., Frints S., Hamel B., Moraine C., Ropers H.H., Strom T., Howell G.R., Whittaker A., Ross M.T., Kahn A., Fryns J.P., Beldjord C., Marynen P., Chelly J. (1999) A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nat. Genet. 23(1), 25‒31.
  164. Gambino F., Pavlowsky A., Begle A., Dupont J. L., Bahi N., Courjaret R., Gardette R., Hadjkacem H., Skala H., Poulain B., Chelly J., Vitale N., Humeau Y. (2007) IL1-receptor accessory protein-like 1 (IL1RAPL1), a protein involved in cognitive functions, regulates N-type Ca2+-channel and neurite elongation. Proc. Natl. Acad. Sci. USA. 104(21), 9063‒9068.
  165. Ng E., Georgiou J., Avila A., Trought K., Mun H.S., Hodgson M., Servinis P., Roder J.C., Collingridge G.L., Wong A.H.C. (2020) Mice lacking neuronal calcium sensor-1 show social and cognitive deficits. Behav. Brain Res. 381, 112420.
  166. Piton A., Michaud J.L., Peng H., Aradhya S., Gauthier J., Mottron L., Champagne N., Lafreniere R.G., Hamdan F.F.; S2D team; Joober R., Fombonne E., Marineau C., Cossette P., Dube M.P., Haghighi P., Drapeau P., Barker P.A., Carbonetto S., Rouleau G.A. (2008) Mutations in the calcium-related gene IL1RAPL1 are associated with autism. Hum. Mol. Genet. 17(24), 3965‒3974.
  167. Handley M.T., Lian L.Y., Haynes L.P., Burgoyne R.D. (2010) Structural and functional deficits in a neuronal calcium sensor-1 mutant identified in a case of autistic spectrum disorder. PLoS One. 5(5), e10534.
  168. Krey J.F., Dolmetsch R.E. (2007) Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr. Opin. Neurobiol. 17(1), 112‒119.
  169. Surmeier D.J., Guzman J.N., Sanchez-Padilla J., Schumacker P.T. (2011) The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience. 198, 221‒231.
  170. Dragicevic E., Poetschke C., Duda J., Schlaudraff F., Lammel S., Schiemann J., Fauler M., Hetzel A., Watanabe M., Lujan R., Malenka R.C., Striessnig J., Liss B. (2014) Cav1.3 channels control D2-autoreceptor responses via NCS-1 in Substantia nigra dopamine neurons. Brain. 137(Pt. 8), 2287‒2302.
  171. Poetschke C., Dragicevic E., Duda J., Benkert J., Dougalis A., DeZio R., Snutch T.P., Striessnig J., Liss B. (2015) Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra d-opamine neurons from Cav1.3 L-type Ca2+ channel KO mice. Sci. Rep. 5, 13688.
  172. Borgkvist A., Mosharov E.V., Sulzer D. (2014) Calcium currents regulate dopamine autoreceptors. Brain. 137(Pt. 8), 2113‒2115.
  173. Simons C., Benkert J., Deuter N., Poetschke C., Pongs O., Schneider T., Duda J., Liss B. (2019) NCS-1 deficiency affects mRNA levels of genes involved in regulation of ATP synthesis and mitochondrial stress in highly vulnerable Substantia nigra dopaminergic neurons. Front. Mol. Neurosci. 12, 252.
  174. Karim S., Mirza Z., Ansari S.A., Rasool M., Iqbal Z., Sohrab S.S., Kamal M.A., Abuzenadah A.M., Al-Qahtani M.H. (2014) Transcriptomics study of neurodegenerative disease: emphasis on synaptic dysfunction mechanism in Alzheimer’s disease. CNS Neurol. Diso-rd. Drug Targets. 13(7), 1202‒1212.
  175. Canal-Martin A., Sastre J., Sanchez-Barrena M.J., Canales A., Baldominos S., Pascual N., Martinez-Gonzalez L., Molero D., Fernandez-Valle M.E., Saez E., Blanco-Gabella P., Gomez-Rubio E., Martin-Santamaria S., Saiz A., Mansilla A., Canada F.J., Jimenez-Barbero J., Martinez A., Perez-Fernandez R. (2019) Insights into real-time chemical processes in a calcium sensor protein-directed dynamic library. Nat. Commun. 10(1), 2798.
  176. Romero-Pozuelo J., Dason J.S., Mansilla A., Banos-Mateos S., Sardina J.L., Chaves-Sanjuan A., Jurado-Gomez J., Santana E., Atwood H.L., Hernandez-Hernandez A., Sanchez-Barrena M.J., Ferrus A. (2014) The guanine-exchange factor Ric8a binds to the Ca2+ sensor NCS-1 to regulate synapse number and neurotransmitter release. J. Cell Sci. 127(Pt. 19), 4246‒4259.
  177. Burgoyne R.D., Helassa N., McCue H.V., Haynes L.P. (2019) Calcium sensors in neuronal function and dysfunction. Cold Spring Harb. Perspect. Biol. 11(5), a035154.
  178. Grabarek Z. (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J. Mol. Biol. 359(3), 509‒525.
  179. Burgoyne R.D., Weiss J.L. (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem. J. 353(Pt. 1), 1‒12.
  180. Heidarsson P.O., Bjerrum-Bohr I.J., Jensen G.A., Pongs O., Finn B.E., Poulsen F.M., Kragelund B.B. (2012) The C-terminal tail of human neuronal calcium sensor 1 regulates the conformational stability of the Ca2+-activated state. J. Mol. Biol. 417(1‒2), 51‒64.
  181. Huttner I.G., Strahl T., Osawa M., King D.S., Ames J.B., Thorner J. (2003) Molecular interactions of yeast frequenin (Frq1) with the phosphatidylinositol 4-kinase isoform, Pik1. J. Biol. Chem. 278(7), 4862‒4874.
  182. Lim S., Strahl T., Thorner J., Ames J.B. (2011) Structure of a Ca2+-myristoyl switch protein that controls activation of a phosphatidylinositol 4-kinase in fission yeast. J. Biol. Chem. 286(14), 12565‒12577.
  183. Stephen R., Bereta G., Golczak M., Palczewski K., Sousa M.C. (2007) Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. Structure. 15(11), 1392‒1402.
  184. Ames J.B., Ishima R., Tanaka T., Gordon J.I., Stryer L., Ikura M. (1997) Molecular mechanics of calcium-myristoyl switches. Nature. 389(6647), 198‒202.
  185. Muralidhar D., Jobby M.K., Krishnan K., Annapurna V., Chary K.V., Jeromin A., Sharma Y. (2005) Equilibrium unfolding of neuronal calcium sensor-1: N-terminal myristoylation influences unfolding and reduces protein stiffening in the presence of calcium. J. Biol. Chem. 280(16), 15569‒15578.
  186. Martin V.M., Johnson J.R., Haynes L.P., Barclay J.W., Burgoyne R.D. (2013) Identification of key structural elements for neuronal calcium sensor-1 function in the regulation of the temperature-dependency of locomotion in C. elegans. Mol. Brain. 6, 39.
  187. Weiergraber O.H., Senin I.I., Zernii E.Y., Churumova V.A., Kovaleva N.A., Nazipova A.A., Permyakov S.E., Permyakov E.A., Philippov P.P., Granzin J., Koch K.W. (2006) Tuning of a neuronal calcium sensor. J. Biol. Chem. 281(49), 37594‒37602.
  188. Zhu Y., Yang S., Qi R., Zou Y., Ma B., Nussinov R., Zhang Q. (2015) Effects of the C-terminal tail on the conformational dynamics of human neuronal calcium sensor-1 protein. J. Phys. Chem. B. 119(44), 14 236‒14 244.
  189. Zhu Y., Ma B., Qi R., Nussinov R., Zhang Q. (2016) Temperature-dependent conformational properties of human neuronal calcium sensor-1 protein revealed by all-atom simulations. J. Phys. Chem. B. 120(14), 3551‒3559.
  190. Lian L.Y., Pandalaneni S.R., Patel P., McCue H.V., Haynes L.P., Burgoyne R.D. (2011) Characterisation of the interaction of the C-terminus of the dopamine D2 receptor with neuronal calcium sensor-1. PLoS One. 6(11), e27779.
  191. Aravind P., Chandra K., Reddy P.P., Jeromin A., Chary K.V., Sharma Y. (2008) Regulatory and structural EF-hand motifs of neuronal calcium sensor-1: Mg2+ modulates Ca2+ binding, Ca2+-induced conformational changes, and equilibrium unfolding transitions. J. Mol. Biol. 376(4), 1100‒1115.
  192. Chandra K., Ramakrishnan V., Sharma Y., Chary K.V. (2011) N-terminal myristoylation alters the calcium binding pathways in neuronal calcium sensor-1. J. Biol. Inorg. Chem. 16(1), 81‒95.
  193. Jeromin A., Muralidhar D., Parameswaran M.N., Roder J., Fairwell T., Scarlata S., Dowal L., Mustafi S.M., Chary K.V., Sharma Y. (2004) N-terminal myristoylation regulates calcium-induced conformational changes in neuronal calcium sensor-1. J. Biol. Chem. 279(26), 27158‒27167.
  194. Cox J.A., Durussel I., Comte M., Nef S., Nef P., Lenz S.E., Gundelfinger E.D. (1994) Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins. J. Biol. Chem. 269(52), 32807‒32813.
  195. Grubbs R.D. (2002) Intracellular magnesium and magnesium buffering. Biometals. 15(3), 251‒259.
  196. O’Callaghan D.W., Burgoyne R.D. (2004) Identification of residues that determine the absence of a Ca2+/myristoyl switch in neuronal calcium sensor-1. J. Biol. Chem. 279(14), 14347‒14354.
  197. O’Callaghan D.W., Hasdemir B., Leighton M., Burgoyne R.D. (2003) Residues within the myristoylation motif determine intracellular targeting of the neuronal Ca2+ sensor protein KChIP1 to post-ER transport ve-sicles and traffic of Kv4 K+ channels. J. Cell Sci. 116(Pt. 23), 4833‒4845.
  198. O’Callaghan D.W., Burgoyne R.D. (2003) Role of myristoylation in the intracellular targeting of neuronal calcium sensor (NCS) proteins. Biochem. Soc. Trans. 31(Pt. 5), 963‒965.
  199. Valentine K.G., Mesleh M.F., Opella S.J., Ikura M., Ames J.B. (2003) Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers. Biochemistry. 42(21), 6333‒6340.
  200. De Cotiis D.A., Woll M.P., Fox T.E., Hill R.B., Levenson R., Flanagan J.M. (2008) Optimized expression and purification of myristoylated human neuronal calcium sensor 1 in E. coli. Protein Expr. Purif. 61(2), 103‒112.
  201. Baksheeva V.E., Nemashkalova E.L., Firsov A.M., Zalevsky A.O., Vladimirov V.I., Tikhomirova N.K., Philippov P.P., Zamyatnin A.A., Jr., Zinchenko D.V., Antonenko Y.N., Permyakov S.E., Zernii E.Y. (2020) Membrane binding of neuronal calcium sensor-1: highly specific interaction with phosphatidylinositol-3-phosphate. Biomolecules. 10(2), 164.
  202. Salaun C., James D.J., Chamberlain L.H. (2004) Lipid rafts and the regulation of exocytosis. Traffic. 5(4), 255‒264.
  203. Taverna E., Saba E., Linetti A., Longhi R., Jeromin A., Righi M., Clementi F., Rosa P. (2007) Localization of synaptic proteins involved in neurosecretion in different membrane microdomains. J. Neurochem. 100(3), 664‒677.
  204. Strahl T., Huttner I.G., Lusin J.D., Osawa M., King D., Thorner J., Ames J.B. (2007) Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1). J. Biol. Chem. 282(42), 30949‒30959.
  205. Philippov P.P., Zernii E.Y. (2018) Recoverin. In: Encyclopedia of Signaling Molecules. Ed. Choi S. Cham: Springer Int. Publ., 4556‒4563.
  206. Ames J.B., Levay K., Wingard J.N., Lusin J.D., Slepak V.Z. (2006) Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin. J. Biol. Chem. 281(48), 37237‒37245.
  207. Roca C., Martinez-Gonzalez L., Daniel-Mozo M., Sastre J., Infantes L., Mansilla A., Chaves-Sanjuan A., Gonzalez-Rubio J.M., Gil C., Canada F.J., Martinez A., Sanchez-Barrena M.J., Campillo N.E. (2018) Deciphering the inhibition of the neuronal calcium sensor 1 and the guanine exchange factor Ric8a with a small phenothiazine molecule for the rational generation of therapeutic synapse function regulators. J. Med. Chem. 61(14), 5910‒5921.
  208. Mansilla A., Chaves-Sanjuan A., Campillo N.E., Semelidou O., Martinez-Gonzalez L., Infantes L., Gonzalez-Rubio J.M., Gil C., Conde S., Skoulakis E.M., Ferrus A., Martinez A., Sanchez-Barrena M.J. (2017) Interference of the complex between NCS-1 and Ric8a with phenothiazines regulates synaptic function and is an approach for fragile X syndrome. Proc. Natl. Acad. Sci. USA. 114(6), E999‒E1008.
  209. Nguyen L.D., Petri E.T., Huynh L.K., Ehrlich B.E. (2019) Characterization of NCS1-InsP3R1 interaction and its functional significance. J. Biol. Chem. 294(49), 18923‒18933.
  210. Bellucci L., Corni S., Di Felice R., Paci E. (2013) The structure of neuronal calcium sensor-1 in solution revealed by molecular dynamics simulations. PLoS One. 8(9), e74383.
  211. Zhu Y., Wu Y., Luo Y., Zou Y., Ma B., Zhang Q. (2014) R102Q mutation shifts the salt-bridge network and reduces the structural flexibility of human neuronal calcium sensor-1 protein. J. Phys. Chem. B. 118(46), 13112‒13122.
  212. Brumback A.C., Ellwood I.T., Kjaerby C., Iafrati J., Robinson S., Lee A.T., Patel T., Nagaraj S., Davatolhagh F., Sohal V.S. (2018) Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol. Psychiatry. 23(100), 2078‒2089.
  213. Tsvetkov P.O., Roman A.Y., Baksheeva V. E., Nazipova A.A., Shevelyova M.P., Vladimirov V.I., Buyanova M.F., Zinchenko D.V., Zamyatnin A.A., Jr., Devred F., Golovin A.V., Permyakov S.E., Zernii E.Y. (2018) Functional status of neuronal calcium sensor-1 is modulated by zinc binding. Front. Mol. Neurosci. 11, 459.
  214. Baksheeva V.E., Tsvetkov P.O., Zalevsky A.O., Vladimirov V.I., Gorokhovets N.V., Zinchenko D.V., Permyakov S.E., Devred F., Zernii E.Y. (2022) Zinc modulation of neuronal calcium sensor proteins: three modes of interaction with different structural outcomes. Biomolecules. 12 (7), 956.
  215. Maret W. (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals. 24(3), 411‒418.
  216. Ugarte M., Osborne N.N. (2014) Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics. 6(2), 189‒200.
  217. Watt N.T., Whitehouse I.J., Hooper N.M. (2010) The role of zinc in Alzheimer’s disease. Int. J. Alzheimers Dis. 2011, 971021.
  218. Li Y., Andereggen L., Yuki K., Omura K., Yin Y., Gilbert H.Y., Erdogan B., Asdourian M.S., Shrock C., de Lima S., Apfel U.P., Zhuo Y., Hershfinkel M., Lippard S.J., Rosenberg P.A., Benowitz L. (2017) Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proc. Natl. Acad. Sci. USA. 114(2), E209‒E218.
  219. Bossy-Wetzel E., Talantova M.V., Lee W.D., Scholzke M.N., Harrop A., Mathews E., Gotz T., Han J., Ellisman M.H., Perkins G.A., Lipton S.A. (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron. 41(3), 351‒365.
  220. Zernii E.Y., Nazipova A.A., Gancharova O.S., Kazakov A.S., Serebryakova M.V., Zinchenko D.V., Tikhomirova N.K., Senin I.I., Philippov P.P., Permyakov E.A., Permyakov S.E. (2015) Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions. Free Radic. Biol. Med. 83, 283‒295.
  221. Liebl M.P., Kaya A.M., Tenzer S., Mittenzwei R., Koziollek-Drechsler I., Schild H., Moosmann B., B-ehl C., Clement A.M. (2014) Dimerization of visinin-like protein 1 is regulated by oxidative stress and calcium and is a pathological hallmark of amyotrophic lateral sclerosis. Free Radic. Biol. Med. 72, 41‒54.
  222. Permyakov S.E., Nazipova A.A., Denesyuk A.I., Bakunts A.G., Zinchenko D.V., Lipkin V.M., Uversky V.N., Permyakov E.A. (2007) Recoverin as a redox-sensitive protein. J. Proteome Res. 6(5), 1855‒1863.
  223. Permyakov S.E., Zernii E.Y., Knyazeva E.L., Denesyuk A.I., Nazipova A.A., Kolpakova T.V., Zinchenko D.V., Philippov P.P., Permyakov E.A., Senin I.I. (2012) Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association. Amino Acids. 42(4), 1435‒1442.
  224. Zernii E.Y., Nazipova A.A., Nemashkalova E.L., Kazakov A.S., Gancharova O.S., Serebryakova M.V., Tikhomirova N.K., Baksheeva V.E., Vladimirov V.I., Zinchenko D.V., Philippov P.P., Senin I.I., Permyakov S.E. (2018) Light-induced thiol oxidation of recoverin affects rhodopsin desensitization. Front. Mol. Neurosci. 11, 474.
  225. Beatty S., Koh H., Phil M., Henson D., Boulton M. (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 45(2), 115‒134.
  226. Baksheeva V.E., Tiulina V.V., Tikhomirova N.K., Gancharova O.S., Komarov S.V., Philippov P.P., Zamyatnin A.A., Jr., Senin I.I., Zernii E.Y. (2018) Suppression of light-induced oxidative stress in the retina by mitochondria-targeted antioxidant. Antioxidants (Basel). 8(1), 3.
  227. Chistyakov D.V., Baksheeva V.E., Tiulina V.V., Goriainov S.V., Azbukina N.V., Gancharova O.S., Arifulin E.A., Komarov S.V., Chistyakov V.V., Tikhomirova N.K., Zamyatnin A.A., Philippov P.P., Senin I.I., Sergeeva M.G., Zernii E.Y. (2020) Mechanisms and treatment of light-induced retinal degeneration-associated inflammation: insights from biochemical profiling of the aqueous humor. Int. J. Mol. Sci. 21(3), 704.
  228. Baksheeva V.E., Baldin A.V., Zalevsky A.O., Nazipova A.A., Kazakov A.S., Vladimirov V.I., Gorokhovets N.V., Devred F., Philippov P.P., Bazhin A.V., Golovin A.V., Zamyatnin A.A., Jr., Zinchenko D.V., Tsvetkov P.O., Permyakov S.E., Zernii E.Y. (2021) Disulfide dimerization of neuronal calcium sensor-1: implications for zinc and redox signaling. Int. J. Mol. Sci. 22(22), 12602.
  229. Holtz W.A., Turetzky J.M., Jong Y.J., O’Malley K.L. (2006) Oxidative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonian mimetics. J. Neurochem. 99(1), 54‒69.
  230. Oshikawa M., Tsutsui C., Ikegami T., Fuchida Y., Matsubara M., Toyama S., Usami R., Ohtoko K., Kato S. (2011) Full-length transcriptome analysis of human retina-derived cell lines ARPE-19 and Y79 using the vector-capping method. Invest. Ophthalmol. Vis. Sci. 52(9), 6662‒6670.
  231. Burgoyne R.D., Haynes L.P. (2012) Understanding the physiological roles of the neuronal calcium sensor proteins. Mol. Brain. 5(1), 2.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (683KB)
3.

Baixar (283KB)
4.

Baixar (265KB)
5.

Baixar (786KB)
6.

Baixar (1MB)
7.

Baixar (455KB)

Declaração de direitos autorais © В.Е. Бакшеева, А.А. Замятнин мл., Е.Ю. Зерний, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies