Redox-Catalytic Properties of Cobalamins

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Vitamin B12, or cobalamin, is essential for normal body function and used in the therapy of different diseases. A several studies have shown that vitamin B12 has anti-inflammatory and antioxidant properties that can play an important role in the prevention of some diseases. On the other hand, it has been reported that vitamin B12 in combination with such reducing agents as ascorbate (vitamin C) and thiols showed prooxidant activity. This review provides information on the roles of vitamin B12 in diseases accompanied by inflammation and oxidative stress and the effects of vitamin B12 administrated alone and in combinations with different reducing agents such as ascorbate and thiols on oxidative stress. In addition, the mechanisms of prooxidant actions of combinations of vitamin B12 with these reducing agents depending on the form of vitamin B12 (hydroxocobalamin and cyanocobalamin) are discussed. Understanding the mechanisms of prooxidant action of vitamin B12 is necessary for developing strategies for therapeutic administration of vitamin B12.

Sobre autores

Yu. Shatalin

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: yury.shatalin@yandex.ru
Russia, 142290, Moscow Region, Pushchino

V. Shubina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: yury.shatalin@yandex.ru
Russia, 142290, Moscow Region, Pushchino

M. Solovieva

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: yury.shatalin@yandex.ru
Russia, 142290, Moscow Region, Pushchino

V. Akatov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: yury.shatalin@yandex.ru
Russia, 142290, Moscow Region, Pushchino

Bibliografia

  1. McCaddon A., Hudson P.R. (2010) L-methylfolate, methylcobalamin, and N-acetylcysteine in the treatment of Alzheimer’s disease-related cognitive decline. CNS Spectr. 15, 2–5.
  2. Regland B., Forsmark S., Halaouate L., Matousek M., Peilot B., Zachrisson O., Gottfries C.-G. (2015) Response to vitamin B12 and folic acid in myalgic encephalomyelitis and fibromyalgia. PLoS One. 10, e0124648.
  3. Wheatley C. (2006) A scarlet pimpernel for the resolution of inflammation? The role of supra-therapeutic doses of cobalamin, in the treatment of systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic or traumatic shock. Med. Hypotheses. 67, 124–142.
  4. Patel J.J., Willoughby R., Peterson J., Carver T., Zelten J., Markiewicz A., Spiegelhoff K., Hipp L.A., Canales B., Szabo A., Heyland D.K., Stoppe C., Zielonka J., Freed J.K. (2023) High-dose IV hydroxocobalamin (vitamin B12) in septic shock. Chest. 163, 303–312.
  5. Kalra S., Ahuja R., Mutti E., Veber D., Seetharam S., Scalabrino G., Seetharam B. (2007) Cobalamin-mediated regulation of transcobalamin receptor levels in rat organs. Arch. Biochem. Biophys. 463, 128–132.
  6. Rothenberg S.P., Quadros E.V., Regec A. 1999. Transcobalamin II. in: Chemistry and Biochemistry of Vitamin B12. Ed. Banerjee R. New York: John Wiley & Sons, pp. 441–473.
  7. Pastore A., Martinelli D., Piemonte F., Tozzi G., Boenzi S., Di Giovamberardino G., Petrillo S., Bertini E., Dionisi-Vici C. (2014) Glutathione metabolism in cobalamin deficiency type C (cblC). J. Inherit. Metab. Dis. 37, 125–129.
  8. Shatalin Y.V., Shubina V.S., Solovieva M.E., Akatov V.S. (2022) Differences in the formation of reactive oxygen species and their cytotoxicity between thiols combined with aqua- and cyanocobalamins. Int. J. Mol. Sci. 23, 11 032.
  9. Brayfield A. (2014) Martindale: the Complete Drug Reference. London, UK: PhP, Pharmaceut. Press.
  10. Xia L., Cregan A.G., Berben L.A., Brasch N.E. (2004) Studies on the formation of glutathionylcobalamin: any free intracellular aquacobalamin is likely to be rapidly and irreversibly converted to glutathionylcobalamin. Inorg. Chem. 43, 6848–6857.
  11. Wingert V., Mukherjee S., Esser A.J., Behringer S., Tanimowo S., Klenzendorf M., Derevenkov I.A., Makarov S.V., Jacobsen D.W., Spiekerkoetter U., Hannibal L. (2021) Thiolatocobalamins repair the activity of pathogenic variants of the human cobalamin processing enzyme CblC. Biochimie. 183, 108–125.
  12. Salnikov D.S., Kucherenko P.N., Dereven’kov I.A., Makarov S.V., van Eldik R. (2014) Kinetics and mechanism of the reaction of hydrogen sulfide with cobalamin in aqueous solution. Eur. J. Inorg. Chem. 2014, 852–862.
  13. Suarez-Moreira E., Hannibal L., Smith C.A., Chavez R.A., Jacobsen D.W., Brasch N.E. (2006) A simple, convenient method to synthesize cobalamins: synthesis of homocysteinylcobalamin, N-acetylcysteinylcobalamin, 2-N-acetylamino-2-carbomethoxyethanethiolatocobalamin, sulfitocobalamin and nitrocobalamin. Dalton Trans. Camb. Engl. 2003. 5269–5277.
  14. Paul C., Brady D.M. (2017) Comparative bioavailability and utilization of particular forms of B12 supplements with potential to mitigate B12-related genetic polymorphisms. Integr. Med. Encinitas Calif. 16, 42–49.
  15. Zhang Y., Hodgson N., Trivedi M., Deth R. (2016) Neuregulin 1 promotes glutathione-dependent neuronal cobalamin metabolism by stimulating cysteine uptake. Oxid. Med. Cell. Longev. 2016, 1–13.
  16. Pezacka E., Green R., Jacobsen D.W. (1990) Glutathionylcobalamin as an intermediate in the formation of cobalamin coenzymes. Biochem. Biophys. Res. Commun. 169, 443–450.
  17. George P., Irvine D.H., Glauser S.C. (2006) The influence of chelation in determining the reactivity of the iron in hemoproteins. and the cobalt in vitamin B12 derivatives. Ann. N.Y. Acad. Sci. 88, 393–415.
  18. Green R., Allen L.H., Bjørke-Monsen A.L., Brito A., Guéant J.L., Miller J.W., Molloy A.M., Nexo E., Stabler S., Toh B.H., Ueland P.M., Yajnik C. (2017) Correction: Vitamin B12 deficiency. Nat. Rev. Dis. Primer. 3, 17040.
  19. Esser A.J., Mukherjee S., Dereven’kov I.A., Makarov S.V., Jacobsen D.W., Spiekerkoetter U., Hannibal L. (2022) Versatile enzymology and heterogeneous phenotypes in cobalamin complementation type C disease. iScience. 25, 104981.
  20. Rizzo G., Laganà A.S. (2020) A review of vitamin B12. In: Molecular Nutrition. Elsevier, pp. 105–129.
  21. Obeid R., Fedosov S.N., Nexo E. (2015) Cobalamin coenzyme forms are not likely to be superior to cyano- and hydroxyl-cobalamin in prevention or treatment of cobalamin deficiency. Mol. Nutr. Food Res. 59, 1364–1372.
  22. Froese D.S., Gravel R.A. (2010) Genetic disorders of vitamin B12 metabolism: eight complementation groups–eight genes. Expert. Rev. Mol. Med. 12, e37.
  23. Bassila C., Ghemrawi R., Flayac J., Froese D.S., Baumgartner M.R., Guéant J.-L., Coelho D. (2017) Methionine synthase and methionine synthase reductase interact with MMACHC and with MMADHC. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 103–112.
  24. Ankar A., Kumar A. (2023) Vitamin B12 deficiency. In: StatPearls. Treasure Island (FL): StatPearls Publ.
  25. Joint Formulary Committee (Great Britain) (2020) BNF 80: September 2020–March 2021. London: BMJ Group; Pharmaceutical Press.
  26. Vidal-Alaball J., Butler C., Cannings-John R., Goringe A., Hood K., McCaddon A., McDowell I., Papaioannou A. (2005) Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency. Cochrane Database Syst. Rev. 3, Ed. Cochrane Metabolic and Endocrine Disorders Group. CD004655.
  27. Клинические рекомендации “Витамин-B12-Дефицитная анемия” 2021, разработанные Национальным гематологическим обществом, Национальным обществом детских гематологов и онкологов – Утверждены Минздравом РФ. https://cr.minzdrav.gov.ru/schema/536_2
  28. Anon. (2008) Physicians’ desk reference: PDR 2008. 62-nd. Ed. Montvale N.J. Thomson Healthcare, p. 3480.
  29. Forsyth J.C., Mueller P.D., Becker C.E., Osterloh J., Benowitz N.L., Rumack B.H., Hall A.H. (1993) Hydroxocobalamin as a cyanide antidote: safety, efficacy and pharmacokinetics in heavily smoking normal volunteers. J. Toxicol. Clin. Toxicol. 31, 277–294.
  30. Bak M.A., Smith J.A., Murfin B., Chen Y. (2022) High-dose hydroxocobalamin for refractory vasoplegia post cardiac surgery. Cureus. 14(8), e28267.23.
  31. Andersson H.C., Shapira E. (1998) Biochemical and clinical response to hydroxocobalamin versus cyanocobalamin treatment in patients with methylmalonic acidemia and homocystinuria (cblC). J. Pediatr. 132, 121–124.
  32. Bodamer O.A.F., Rosenblatt D.S., Appel S.H., Beaudet A.L. (2001) Adult-onset combined methylmalonic aciduria and homocystinuria (cblC). Neurology. 56, 1113–1113.
  33. Huemer M., Diodato D., Schwahn B., Schiff M., Bandeira A., Benoist J.F., Burlina A., Cerone R., Couce M.L., Garcia-Cazorla A., la Marca G., Pasquini E., Vilarinho L., Weisfeld-Adams J.D., Kožich V., Blom H., Baumgartner M.R., Dionisi-Vici C. (2017) Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J. Inherit. Metab. Dis. 40, 21–48.
  34. Almannai M., Marom R., Divin K., Scaglia F., Sutton V.R., Craigen W.J., Lee B., Burrage L.C., Graham B.H. (2017) Milder clinical and biochemical phenotypes associated with the c.482G>A (p.Arg161Gln) pathogenic variant in cobalamin C disease: implications for management and screening. Mol. Genet. Metab. 122, 60–66.
  35. Higashimoto T., Kim A.Y., Ogawa J.T., Sloan J.L., Almuqbil M.A., Carlson J.M., Manoli I., Venditti C.P., Gunay-Aygun M., Wang T. (2020) High dose hydroxocobalamin achieves biochemical correction and improvement of neuropsychiatric deficits in adults with late onset cobalamin C deficiency. JIMD Rep. 51, 17–24.
  36. Fischer S., Huemer M., Baumgartner M., Deodato F., Ballhausen D., Boneh A., Burlina A.B., Cerone R., Garcia P., Gökçay G., Grünewald S., Häberle J., Jaeken J., Ketteridge D., Lindner M., Mandel H., Martinelli D., Martins E.G., Schwab K.O., Gruenert S.C., Schwahn B.C., Sztriha L., Tomaske M., Trefz F., Vilarinho L., Rosenblatt D.S., Fowler B., Dionisi-Vici C. (2014) Clinical presentation and outcome in a series of 88 patients with the cblC defect. J. Inherit. Metab. Dis. 37, 831–840.
  37. Carrillo-Carrasco N., Sloan J., Valle D., Hamosh A., Venditti C.P. (2009) Hydroxocobalamin dose escalation improves metabolic control in cblC. J. Inherit. Metab. Dis. 32, 728–731.
  38. Van Hove J.L., Van Damme-Lombaerts R., Grünewald S., Peters H., Van Damme B., Fryns J.P., Arnout J., Wevers R., Baumgartner E.R., Fowler B. (2002) Cobalamin disorder cblC presenting with late-onset thrombotic microangiopathy. Am. J. Med. Genet. 111, 195–201.
  39. Matos I.V., Castejón E., Meavilla S., O’Callaghan M., Garcia-Villoria J., López-Sala A., Ribes A., Artuch R., Garcia-Cazorla A. (2013) Clinical and biochemical outcome after hydroxocobalamin dose escalation in a series of patients with cobalamin C deficiency. Mol. Genet. Metab. 109, 360–365.
  40. Scalabrino G., Carpo M., Bamonti F., Pizzinelli S., D’Avino C., Bresolin N., Meucci G., Martinelli V., Comi G.C., Peracchi M. (2004) High tumor necrosis factor-alfa in levels in cerebrospinal fluid of cobalamin-deficient patients. Ann. Neurol. 56, 886–890.
  41. Tamura J., Kubota K., Murakami H., Sawamura M., Matsushima T., Tamura T., Saitoh T., Kurabayshi H., Naruse T. (1999) Immunomodulation by vitamin B12: augmentation of CD8 + T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment: vit.B12 augments CD8+ cells and NK cell activity. Clin. Exp. Immunol. 116, 28–32.
  42. Veber D., Mutti E., Tacchini L., Gammella E., Tredici G., Scalabrino G. (2008) Indirect down-regulation of nuclear NF-κB levels by cobalamin in the spinal cord and liver of the rat. J. Neurosci. Res. 86, 1380–1387.
  43. Mottram L., Speak A.O., Selek R.M., Cambridge E.L., McIntyre Z., Kane L., Mukhopadhyay S., Grove C., Colin A., Brandt C., Duque-Correa M.A., Forbester J., Nguyen T.A., Hale C., Vasilliou G.S., Arends M.J., Wren B.W., Dougan G., Clare S. (2016) Infection susceptibility in gastric intrinsic factor (vitamin B12)-defective mice is subject to maternal influences. mBio. 7, e00830-16. https://doi.org/10.1128/mBio.00830-16
  44. Vellema P., Rutten V.P.M.G., Hoek A., Moll L., Wentink G.H. (1996) The effect of cobalt supplementation on the immune response in vitamin B12 deficient Texel lambs. Vet. Immunol. Immunopathol. 55, 151–161.
  45. Кочкин А.А., Яворовский А.Г., Берикашвили Л.Б., Лихванцев В.В. (2020) Современная вазопрессорная терапия септического шока (обзор). Общая реаниматология. 16, 77‒93.
  46. Misra U.K., Kalita J., Singh S.K., Rahi S.K. (2017) Oxidative stress markers in vitamin B12 deficiency. Mol. Neurobiol. 54, 1278–1284.
  47. Li F., Bahnson E.M., Wilder J., Siletzky R., Hagaman J., Nickekeit V., Hiller S., Ayesha A., Feng L., Levine J.S., Takahashi N., Maeda-Smithies N. (2020) Oral high dose vitamin B12 decreases renal superoxide and post-ischemia/reperfusion injury in mice. Redox Biol. 32, 101 504.
  48. Андрианова Н.В., Зоров Д.Б., Плотников Е.Ю. (2020) Воспаление и окислительный стресс как мишени для терапии ишемического повреждения почек (обзор). Биохимия. 85, 1873‒1886.
  49. Gherasim C., Ruetz M., Li Z., Hudolin S., Banerjee R. (2015) Pathogenic mutations differentially affect the catalytic activities of the human B12-processing chaperone CblC and increase futile redox cycling. J. Biol. Chem. 290, 11393–11402.
  50. Wang X., Yang Y., Li X., Li C., Wang C. (2019) Distinct clinical, neuroimaging and genetic profiles of late-onset cobalamin C defects (cb1C): a report of 16 Chinese cases. Orphanet. J. Rare Dis. 14, 109.
  51. Sloan J.L., Carrillo N., Adams D., Venditti C.P. (1993) Disorders of intracellular cobalamin metabolism. In: GeneReviews®. Eds Adam M.P., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J., Gripp K.W., Amemiya A. Seattle (WA): University of Washington, Seattle.
  52. Li Z., Shanmuganathan A., Ruetz M., Yamada K., Lesniak N.A., Kräutler B., Brunold T.C., Koutmos M., Banerjee R. (2017) Coordination chemistry controls the thiol oxidase activity of the B12-trafficking protein CblC. J. Biol. Chem. 292, 9733–9744.
  53. Birch C.S., Brasch N.E., McCaddon A., Williams J.H.H. (2009) A novel role for vitamin B12: cobalamins are intracellular antioxidants in vitro. Free Radic. Biol. Med. 47, 184–188.
  54. Соловьева М.Е., Соловьев В.В., Фасхутдинова А.А, Кудрявцев А.А, Акатов В.С. (2007) Прооксидантное и цитотоксическое действие N-ацетилцистеина и глутатиона в сочетаниях с витамином В12b. Цитология. 1, 70‒78.
  55. Solovieva M.E., Solovyev V.V., Kudryavtsev A.A., Trizna Y.A., Akatov V.S. (2008) Vitamin B12b enhances the cytotoxicity of dithiothreitol. Free Radic. Biol. Med. 44, 1846–1856.
  56. Solovieva M.E., Shatalin Yu.V., Solovyev V.V., Sazonov A.V., Kutyshenko V.P., Akatov V.S. (2019) Hydroxycobalamin catalyzes the oxidation of diethyldithiocarbamate and increases its cytotoxicity independently of copper ions. Redox Biol. 20, 28–37.
  57. Solovieva M., Shatalin Y., Fadeev R., Krestinina O., Baburina Y., Kruglov A., Kharechkina E., Kobyakova M., Rogachevsky V., Shishkova E., Akatov A.V. (2020) Vitamin B12b enhances the cytotoxicity of diethyldithiocarbamate in a synergistic manner, inducing the paraptosis-like death of human larynx carcinoma cells. Biomolecules. 10, 69.
  58. Solovieva M., Shatalin Y., Odinokova I., Krestinina O., Baburina Y., Lomovskaya Y., Pankratov A., Pankratova N., Buneeva O., Kopylov A., Medvedev A., Akatov V. (2022) Disulfiram oxy-derivatives suppress protein retrotranslocation across the ER membrane to the cytosol and initiate paraptosis-like cell death. Membranes. 12, 845.
  59. Banerjee R., Gouda H., Pillay S. (2021) Redox-linked coordination chemistry directs vitamin B 12 trafficking. Acc. Chem. Res. 54, 2003–2013.
  60. Dereven’kov I.A., Salnikov D.S., Silaghi-Dumitrescu R., Makarov S.V., Koifman O.I. (2016) Redox chemistry of cobalamin and its derivatives. Coord. Chem. Rev. 309, 68–83.
  61. Dereven’kov I.A., Hannibal L., Dürr M., Salnikov D.S., Bui Thi T.T., Makarov S.V., Koifman O.I., Ivanović-Burmazović I. (2017) Redox turnover of organometallic B12 cofactors recycles vitamin C: sulfur assisted reduction of dehydroascorbic acid by Cob(II)alamin. J. Organomet. Chem. 839, 53–59.
  62. Li Z., Mascarenhas R., Twahir U.T., Kallon A., Deb A., Yaw M., Penner-Hahn J., Koutmos M., Warncke K., Banerjee R. (2020) An interprotein Co–S coordination complex in the B12-trafficking pathway. J. Am. Chem. Soc. 142, 16334–16345.
  63. Jacobsen D.W., Troxell L.S., Brown K.L. (1984) Catalysis of thiol oxidation by cobalamins and cobinamides: reaction products and kinetics. Biochemistry. 23, 2017–2025.
  64. Jacobsen D.W., Pezacka E.H., Brown K.L. (1993) The inhibition of corrinoid-catalyzed oxidation of mercaptoethanol by methyl iodide: mechanistic implications. J. Inorg. Biochem. 50, 47–63.
  65. Nazhat N.B., Golding B.T., Johnson G.R.A., Jones P. (1989) Destruction of vitamin B12 by reaction with ascorbate: the role of hydrogen peroxide and the oxidation state of cobalt. J. Inorg. Biochem. 36, 75–81.
  66. Suarez-Moreira E., Yun J., Birch C.S., Williams J.H.H., McCaddon A., Brasch N.E. (2009) Vitamin B12 and redox homeostasis: Cob(II)alamin reacts with superoxide at rates approaching superoxide dismutase (SOD). J. Am. Chem. Soc. 131, 15 078–15 079.
  67. Dereven’kov I.A., Salnikov D.S., Makarov S.V., Boss G.R., Koifman O.I. (2013) Kinetics and mechanism of oxidation of super-reduced cobalamin and cobinamide species by thiosulfate, sulfite and dithionite. Dalton Trans. 42, 15307‒15316.
  68. Quintiliani M., Badiello R., Tamba M., Esfandi A., Gorin G. (1977) Radiolysis of glutathione in oxygen-containing solutions of pH 7. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 32, 195–202.
  69. Wefers H., Sies H. (1983) Oxidation of glutathione by the superoxide radical to the disulfide and the sulfonate yielding singlet oxygen. Eur. J. Biochem. 137, 29–36.
  70. Zhang X., Zhang N., Schuchmann H.-P., Von Sonntag C. (1994) Pulse radiolysis of 2-mercaptoethanol in oxygenated aqueous solution. Generation and reactions of the thiylperoxyl radical. J. Phys. Chem. 98, 6541–6547.
  71. Winterbourn C.C., Metodiewa D. (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322–328.
  72. Nagy P., Ashby M.T. (2007) Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J. Am. Chem. Soc. 129, 14082–14091.
  73. Chandler J.D., Nichols D.P., Nick J.A., Hondal R.J., Day B.J. (2013) Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense. J. Biol. Chem. 288, 18421–18428.
  74. Hugo M., Turell L., Manta B., Botti H., Monteiro G., Netto L.E.S., Alvarez B., Radi R., Trujillo M. (2009) Thiol and sulfenic acid oxidation of ahpe, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry. 48, 9416–9426.
  75. Forni L.G., Mönig J., Mora-Arellano V.O., Willson R.L. (1983) Thiyl free radicals: direct observations of electron transfer reactions with phenothiazines and ascorbate. J. Chem. Soc. Perkin. Trans. 2, 961–965.
  76. Nagy P., Ashby M.T. (2007) Reactive sulfur species: kinetics and mechanism of the hydrolysis of cysteine thiosulfinate ester. Chem. Res. Toxicol. 20, 1364–1372.
  77. Mezyk S.P. (1996) Rate constant determination for the reaction of hydroxyl and glutathione thiyl radicals with glutathione in aqueous solution. J. Phys. Chem. 100, 8861–8866.
  78. Zhao R., Lind J., Merenyi G., Eriksen T.E. (1994) Kinetics of one-electron oxidation of thiols and hydrogen abstraction by thiyl radicals from alpha-amino C–H bonds. J. Am. Chem. Soc. 116, 12010–12015.
  79. Kožich V., Schwahn B.C., Sokolová J., Křížková M., Ditroi T., Krijt J., Khalil Y., Křížek T., Vaculíková-Fantlová T., Stibůrková B., Mills P., Clayton P., Barvíková K., Blessing H., Sykut-Cegielska J., Dionisi-Vici C., Gasperini S., García-Cazorla Á., Haack T.B., Honzík T., Ješina P., Kuster A., Laugwitz L., Martinelli D., Porta F., Santer R., Schwarz G., Nagy P. (2022) Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H2S homeostasis. Redox Biol. 58, 102517.
  80. Amorati R., Lynett P.T., Valgimigli L., Pratt D.A. (2012) The reaction of sulfenic acids with peroxyl radicals: insights into the radical-trapping antioxidant activity of plant-derived thiosulfinates. Chemistry. 18, 6370–6379.
  81. Tamba M., Dajka K., Ferreri C., Asmus K.-D., Chatgilialoglu C. (2007) One-electron reduction of methanesulfonyl chloride. The fate of MeSO2 Cl•– and MeS intermediates in oxygenated solutions and their role in the cis-trans-isomerization of mono-unsaturated fatty acids. J. Am. Chem. Soc. 129, 8716–8723.
  82. Schöneich C. (2012) Radical-based damage of sulfur-containing amino acid residues. in: Encyclopedia of Radicals in Chemistry, Biology and Materials. Eds Chatgilialoglu C., Studer A. Chichester, UK: John Wiley & Sons, Ltd, p. rad044.
  83. Dereven’kov I.A., Tsaba L.V., Pokrovskaya E.A., Makarov S.V. (2018) Studies on the interaction of aquacobalamin with cysteinesulfinic and cysteic acids, hypotaurine and taurine. J. Coord. Chem. 71, 3194–3206.
  84. Gupta V., Carroll K.S. (2014) Sulfenic acid chemistry, detection and cellular lifetime. Biochim. Biophys. Acta. 1840, 847–875.
  85. Turell L., Steglich M., Torres M.J., Deambrosi M., Antmann L., Furdui C.M., Schopfer F.J., Alvarez B. (2021) Sulfenic acid in human serum albumin: reaction with thiols, oxidation and spontaneous decay. Free Radic. Biol. Med. 165, 254–264.
  86. Paulsen C.E., Carroll K.S. (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem. Biol. 5, 47–62.
  87. Paulsen C.E., Carroll K.S. (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633–4679.
  88. Lorenzen I., Eble J.A., Hanschmann E.-M. (2021) Thiol switches in membrane proteins – extracellular redox regulation in cell biology. Biol. Chem. 402, 253–269.
  89. Ovalle F., Grimes T., Xu G., Patel A.J., Grayson T.B., Thielen L.A., Li P., Shalev A. (2018) Verapamil and b-eta cell function in adults with recent-onset type 1 diabetes. Nat. Med. 24, 1108–1112.
  90. Michalek R.D., Nelson K.J., Holbrook B.C., Yi J.S., Stridiron D., Daniel L.W., Fetrow J.S., King S.B., Poole L.B., Grayson J.M. (2007) The requirement of reversible cysteine sulfenic acid formation for T cell activation and function. J. Immunol. 179, 6456–6467.
  91. Pantano C., Reynaert N.L., Vliet A.V.D., Janssen–Heininger Y.M.W. (2006) Redox-sensitive kinases of the nuclear factor-κB signaling pathway. Antioxid. Redox Signal. 8, 1791–806.
  92. Paulsen C.E., Carroll K.S. (2009) Chemical dissection of an essential redox switch in yeast. Chem. Biol. 16, 217–225.
  93. Duan J., Zhang T., Gaffrey M.J., Weitz K.K., Moore R.J., Li X., Xian M., Thrall B.D., Qian W.-J. (2020) Stochiometric quantification of the thiol redox proteome of macrophages reveals subcellular compartmentalization and susceptibility to oxidative perturbations. Redox Biol. 36, 101649.
  94. Zhang T., Gaffrey M.J., Li X., Qian W.-J. (2021) Characterization of cellular oxidative stress response by stoichiometric redox proteomics. Am. J. Physiol. – Cell Physiol. 320, C182–C194.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (108KB)
3.

Baixar (450KB)
4.

Baixar (543KB)

Declaração de direitos autorais © Ю.В. Шаталин, В.С. Шубина, М.Е. Соловьева, В.С. Акатов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies