The Role of Mitochondrial in Intestinal Epithelial Barrier Dysfunction during Inflammatory Bowel Disease

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Inflammatory bowel diseases are widely spread in industrial countries with every 20th citizen being affected. Dysregulation of epithelial barrier function is considered to play a key role in the development of inflammatory bowel diseases. Intestinal epithelium permeability depends mostly on the condition of intercellular contacts and epithelial cells' renewal ability. Mitochondria participate in the regulation of various intracellular processes besides performing the energetic function. Recent data indicate the potential role of mitochondria in intestinal epithelial barrier regulation and inflammatory bowel diseases onset. Mitochondrial dysfunction may be one of the reasons for disruption of the structure of tight junctions and the cytoskeleton of intestinal epithelial cells, as well as a decrease in the ability of the epithelial lining to self-renewal. All this leads to a decrease in the barrier function of the intestinal epithelium and the development of inflammatory bowel diseases. Nevertheless, the mechanisms of these processes are still unclear and further research is required.

作者简介

D. Chernyavskij

Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University

Email: chelombitko@mail.bio.msu.ru
Russia, 119991, Moscow

I. Galkin

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: chelombitko@mail.bio.msu.ru
Russia, 119992, Moscow

A. Pavlyuchenkova

Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: chelombitko@mail.bio.msu.ru
Russia, 119991, Moscow; Russia, 119992, Moscow

A. Fedorov

Faculty of Biology, Lomonosov Moscow State University

Email: chelombitko@mail.bio.msu.ru
Russia, 119991, Moscow

M. Chelombitko

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; The “Russian Clinical Research Center for Gerontology”, Pirogov Russian National Research Medical University,
Ministry of Health of the Russian Federation

编辑信件的主要联系方式.
Email: chelombitko@mail.bio.msu.ru
Russia, 119992, Moscow; Russia, 129226, Moscow

参考

  1. Kaplan G.G. (2015) The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 12(12), 720–727.
  2. de Lange K.M., Barrett J.C. (2015) Understanding inflammatory bowel disease via immunogenetics. J. A-utoimmun. 64, 91–100.
  3. Fiocchi C. (2015) Inflammatory bowel disease pathogenesis: where are we? J. Gastroenterol. Hepatol. 30(Suppl. 1), 12–18.
  4. Kucharzik T., Maaser C., Lügering A., Kagnoff M., Mayer L., Targan S., Domschke W. (2006) Recent understanding of IBD pathogenesis: implications for future therapies. Inflamm. Bowel Dis. 12(11), 1068–1083.
  5. Coskun M. (2014) Intestinal epithelium in inflammatory bowel disease. Front. Med. 1, 24.
  6. Bischoff S.C., Barbara G., Buurman W., Ockhuizen T., Schulzke J.D., Serino M., Tilg H., Watson A., Wells J.M. (2014) Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189.
  7. Shen L., Turner J.R. (2006) Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am. J. Physiol. Gastrointest. Liver Physiol. 290(4), G577–G582.
  8. Zolotova N.A., Akhrieva Kh.M., Zayratyants O.V. (2019) Epithelial barrier of the colon in health and patients with ulcerative colitis. Eksp. Klin. Gastroenterol. 162(2), 4–13.
  9. Suzuki T. (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol. Life Sci. 70(4), 631–659.
  10. Guttman J.A., Finlay B.B. (2009) Tight junctions as targets of infectious agents. Biochim. Biophys. Acta. 1788(4), 832–841.
  11. Schoultz I., Keita Å.V. (2020) The intestinal barrier and current techniques for the assessment of gut permeability. Cells. 9(8), 1909.
  12. Rath E., Moschetta A., Haller D. (2018) Mitochondrial function ‒ gatekeeper of intestinal epithelial cell homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15(8), 497–516.
  13. Van Itallie C.M., Holmes J., Bridges A., Gookin J.L., Coccaro M.R., Proctor W., Colegio O.R., Anderson J.M. (2008) The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J. Cell. Sci. 121(Pt 3), 298–305.
  14. Backert S., Boehm M., Wessler S., Tegtmeyer N. (2013) Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both? Cell Commun. Signal. 11, 72.
  15. Peterson L.W., Artis D. (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14(3), 141–153.
  16. Roda G., Sartini A., Zambon E., Calafiore A., Marocchi M., Caponi A., Belluzzi A., Roda E. (2010) Intestinal epithelial cells in inflammatory bowel diseases. World J. Gastroenterol. 16(34), 4264–4271.
  17. Schmitz H., Barmeyer C., Fromm M., Runkel N., Foss H.D., Bentzel C.J., Riecken E.O., Schulzke J.D. (1999) Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology. 116(2), 301–309.
  18. Oshima T., Miwa H., Joh T. (2008) Changes in the expression of claudins in active ulcerative colitis. J. Gastroenterol. Hepatol. 23(Suppl. 2), S146–S150.
  19. Landy J., Ronde E., English N., Clark S.K., Hart A.L., Knight S.C., Ciclitira P.J., Al-Hassi H.O. (2016) Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J. Gastroenterol. 22(11), 3117–3126.
  20. Marin M.L., Greenstein A.J., Geller S.A., Gordon R.E., Aufses A.H Jr. (1983) A freeze fracture study of Crohn’s disease of the terminal ileum: changes in epithelial tight junction organization. Am. J. Gastroenterol. 78(9), 537–547.
  21. Zeissig S., Bürgel N., Günzel D., Richter J., Mankertz J., Wahnschaffe U., Kroesen A.J., Zeitz M., Fromm M., Schulzke J.D. (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 56(1), 61–72.
  22. Das P., Goswami P., Das T.K., Nag T., Sreenivas V., Ahuja V., Panda S.K., Gupta S.D., Makharia G.K. (2012) Comparative tight junction protein expressions in colonic Crohn’s disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch. 460(3), 261–270.
  23. Ungaro R., Mehandru S., Allen P.B., Peyrin-Biroulet L., Colombel J.F. (2017) Ulcerative colitis. Lancet. 389(10080), 1756–1770.
  24. Mayer L. (2010) Evolving paradigms in the pathogenesis of IBD. J. Gastroenterol. 45(1), 9–16.
  25. Liu J.Z., van Sommeren S., Huang H., Ng S.C., Alberts R., Takahashi A., Ripke S., Lee J.C., Jostins L., Shah T., Abedian S., Cheon J.H., Cho J., Dayani N.E., Franke L., Fuyuno Y., Hart A., Juyal R.C., Juyal G., Kim W.H., Morris A.P., Poustchi H., Newman W.G., Midha V., Orchard T.R., Vahedi H., Sood A., Sung J.Y., Malekzadeh R., Westra H.J, Yamazaki K., Yang S.K.; International Multiple Sclerosis Genetics Consortium; International IBD Genetics Consortium; Barrett J.C., Alizadeh B.Z., Parkes M., Bk T., Daly M.J., Kubo M., Anderson C.A., Weersma R.K. (2015) Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47(9), 979–986.
  26. Novak E.A., Mollen K.P. (2015) Mitochondrial dysfunction in inflammatory bowel disease. Front. Cell Dev. Biol. 3, 62.
  27. Wang A., Keita Å.V., Phan V., McKay C.M., Schoultz I., Lee J., Murphy M.P., Fernando M., Ronaghan N., Balce D., Yates R., Dicay M., Beck P.L., MacNaughton W.K., Söderholm J.D., McKay D.M. (2014) Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am. J. Pathol. 184(9), 2516–2527.
  28. Cunningham KE, Vincent G, Sodhi CP, Novak EA, Ranganathan S, Egan CE, Stolz D.B., Rogers M.B., Firek B., Morowitz M.J., Gittes G.K., Zuckerbraun B.S., Hackam D.J., Mollen K.P. (2016) Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) protects against experimental murine colitis. J. Biol. Chem. 291(19), 10184–101200.
  29. Jackson D.N., Theiss A.L. (2020) Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut. Microbes. 11(3), 285–304.
  30. Kłos P., Dabravolski S.A. (2021) The role of mitochondria dysfunction in inflammatory bowel diseases and colorectal cancer. Int. J. Mol. Sci. 22(21), 11673.
  31. Ho G.T., Theiss A.L. (2022) Mitochondria and inflammatory bowel diseases: toward a stratified therapeutic intervention. Annu. Rev. Physiol. 10(84), 435‒459.https://doi.org/10.1146/annurev-physiol-060821-083306
  32. Bourgonje A.R., Feelisch M., Faber K.N., Pasch A., Dijkstra G., van Goor H. (2020) Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends. Mol. Med. 26(11), 1034–1046.
  33. Cunningham K., Novak E., Vincent G., Mollen K.P., Chinnder S. (2015) Antibiotic treatment protects against intestinal inflammation in peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) deficient mice in experimental colitis. J. Am. Coll. Surg. 221(4), S28–S29.
  34. Söderholm J.D., Olaison G., Peterson K.H., Franzén L.E., Lindmark T., Wirén M., Tagesson C, Sjödahl R. (2002) Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn’s disease. Gut. 50(3), 307–313.
  35. Hsieh S.Y., Shih T.C., Yeh C.Y., Lin C.J., Chou Y.Y., Lee Y.S. (2006) Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics. 6(19), 5322–5331.
  36. Bohovych I., Khalimonchuk O. (2016) Sending out an SOS: mitochondria as a signaling hub. Front. Cell Dev. Biol. 4, 109.
  37. Pickles S., Vigié P., Youle R.J. (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28(4), R170–R185.
  38. Haberman Y., Karns R., Dexheimer P.J., Schirmer M., Somekh J., Jurickova I., Braun T., Novak E., Bauman L., Collins M.H., Mo A., Rosen M.J., Bonkowski E., Gotman N., Marquis A., Nistel M., Rufo P.A., Baker S.S., Sauer C.G., Markowitz J., Pfefferkorn M.D., Rosh J.R., Boyle B.M., Mack D.R., Baldassano R.N., Shah S., Leleiko N.S., Heyman M.B., Grifiths A.M., Patel A.S., Noe J.D., Aronow B.J., Kugathasan S., Walters T.D., Gibson G., Thomas S.D., Mollen K., Shen-Orr S., Huttenhower C., Xavier R.J., Hyams J.S., Denson L.A. (2019) Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat. Commun. 10(1), 38.
  39. Heller S., Penrose H.M., Cable C., Biswas D., Nakhoul H., Baddoo M., Flemington E., Crawford S.E., Savkovic S.D. (2017) Reduced mitochondrial activity in colonocytes facilitates AMPKα2-dependent inflammation. FASEB J. 31(5), 2013–2025.
  40. Xue X, Bredell BX, Anderson ER, Martin A, Mays C, Nagao-Kitamoto H, Huang S., Győrffy B., Greenson J.K., Hardiman K., Spence J.R., Kamada N., Shah Y.M. (2017) Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proc. Natl. Acad. Sci. USA. 114(45), E9608–E9617.
  41. Sifroni K.G., Damiani C.R., Stoffel C., Cardoso M.R., Ferreira G.K., Jeremias I.C., Rezin G.T., Scaini G., Schuck P.F., Dal-Pizzol F., Streck E.L. (2010) Mitochondrial respiratory chain in the colonic mucosal of patients with ulcerative colitis. Mol. Cell. Biochem. 342(1‒2), 111–115.
  42. Restivo N.L., Srivastava M.D., Schafer I.A., Hoppel C.L. (2004) Mitochondrial dysfunction in a patient with crohn disease: possible role in pathogenesis. J. Pediatr. Gastroenterol. Nutr. 38(5), 534–538.
  43. Dankowski T., Schröder T., Möller S., Yu X., Ellinghaus D., Bär F., Fellermann K., Lehnert H., Schrei-ber S., Franke A., Sina C., Ibrahim S.M., König I.R. (2016) Male-specific association between MT-ND4 11719 A/G polymorphism and ulcerative colitis: a mitochondria-wide genetic association study. BMC Gastroenterol. 16(1), 118.
  44. Crakes K.R., Santos Rocha C., Grishina I., Hirao L.A., Napoli E., Gaulke C.A., Fenton A., Datta S., Arredondo J., Marco M.L., Sankaran-Walters S., Cortopassi G., Giulivi C., Dandekar S. (2019) PPARα-targeted mitochondrial bioenergetics mediate repair of intestinal barriers at the host-microbe intersection during SIV infection. Proc. Natl. Acad. Sci. USA. 116(49), 24819–24829.
  45. Park W.H., Han Y.W., Kim S.H., Kim S.Z. (2007) An ROS generator, antimycin A, inhibits the growth of HeLa cells via apoptosis. J. Cell Biochem. 102(1), 98–109.
  46. Liu Y., Schubert D.R. (2009) The specificity of neuroprotection by antioxidants. J. Biomed. Sci. 16(1), 98.
  47. Janssen Duijghuijsen L.M., Grefte S., de Boer V.C.J., Zeper L., van Dartel D.A.M., van der Stelt I., Bekkenkamp-Grovenstein M., van Norren K., Wichers H.J., Keijer J. (2017) Mitochondrial ATP depletion disrupts Caco-2 monolayer integrity and internalizes claudin 7. Front. Physiol. 8, 794.
  48. Smith S.A., Ogawa S.A., Chau L., Whelan K.A., Hamilton K.E., Chen J., Keilbaugh S., Fogt F., Bewtra M., Braun J., Xavier R.J., Clish C.B., Slaff B., Welji-e A.M., Bushman F.D., Lewis J.D., Li H., Master S.R., Bennett M.J., Nakagawa H., Wu G.D. (2021) Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J. Clin. Invest. 131(1), e133371.
  49. Roediger W.E., Nance S. (1986) Metabolic induction of experimental ulcerative colitis by inhibition of fatty acid oxidation. Br. J. Exp. Pathol. 67(6), 773–782.
  50. Umar S. (2010) Intestinal stem cells. Curr. Gastroenterol. Rep. 12(5), 340–348.
  51. Chandel N.S., Jasper H., Ho T.T., Passegué E. (2016) Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat. Cell. Biol. 18(8), 823–832.
  52. Rodríguez-Colman M.J., Schewe M., Meerlo M., Stigter E., Gerrits J., Pras-Raves M., Sacchetti A., Hornsveld M., Oost K.C., Snippert H.J., Verhoeven-Duif N., Fodde R., Burgering B.M. (2017) Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature. 543(7645), 424–427.
  53. Zhang F., Pirooznia M., Xu H. (2020) Mitochondria regulate intestinal stem cell proliferation and epithelial homeostasis through FOXO. Mol. Biol. Cell. 31(14), 1538–1549.
  54. Bär F., Bochmann W., Widok A., von Medem K., Pagel R., Hirose M., Yu X., Kalies K., König P., Böhm R., Herdegen T., Reinicke A.T., Büning J., Lehnert H., Fellermann K., Ibrahim S., Sina C. (2013) Mitochondrial gene polymorphisms that protect mice from colitis. Gastroenterology. 145(5), 1055–1063.e3.
  55. Wen Y.A., Xiong X., Scott T., Li A.T., Wang C., Weiss H.L., Tan L., Bradford E., Fan T.W.M., Chandel N.S., Barrett T.A., Gao T. (2019) The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer. Cell Death Differ. 26(10), 1955–1969.
  56. Mihaylova M.M., Shaw R.J. (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell. Biol. 13(9), 1016–1023.
  57. Chen L., Wang J., You Q., He S., Meng Q., Gao J., Wu X., Shen Y., Sun Y., Wu X., Xu Q. (2018) Activating AMPK to restore tight junction assembly in intestinal epithelium and to attenuate experimental colitis by metformin. Front. Pharmacol. 9, 761.
  58. Chang K.W., Kuo C.Y. (2015) 6-Gingerol modulates proinflammatory responses in dextran sodium sulfate (DSS)-treated Caco-2 cells and experimental colitis in mice through adenosine monophosphate-activated protein kinase (AMPK) activation. Food Funct. 6(10), 3334–3341.
  59. Sun X., Yang Q., Rogers C.J., Du M., Zhu M.J. (2017) AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death Differ. 24(5), 819–831.
  60. Zorov D.B., Juhaszova M., Sollott S.J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94(3), 909–950.
  61. Shanmugasundaram K., Nayak B.K., Friedrichs W.E., Kaushik D., Rodriguez R., Block K. (2017) NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat. Commun. 8(1), 997.
  62. Forrester S.J., Kikuchi D.S., Hernandes M.S., Xu Q., Griendling K.K. (2018) Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122(6), 877–902.
  63. Butterfield D.A., Boyd-Kimball D. (2020) Mitochondrial oxidative and nitrosative stress and Alzheimer disease. Antioxidants (Basel). 9(9), 818.
  64. Dincer Y., Erzin Y., Himmetoglu S., Gunes K.N., Bal K., Akcay T. (2007) Oxidative DNA damage and antioxidant activity in patients with inflammatory bowel disease. Dig. Dis. Sci. 52(7), 1636–1641.
  65. Balmus I.M., Ciobica A., Trifan A., Stanciu C. (2016) The implications of oxidative stress and antioxidant therapies in inflammatory bowel disease: clinical aspects and animal models. Saudi J. Gastroenterol. 22(1), 3–17.
  66. Kruidenier L., Kuiper I., Lamers C.B., Verspaget H.W. (2003) Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants. J. Pathol. 201, 28–36.
  67. Keshavarzian A., Banan A., Farhadi A., Komanduri S., Mutlu E., Zhang Y., Fields J.Z. (2003) Increases in free radicals and cytoskeletal protein oxidation and nitration in the colon of patients with inflammatory bowel disease. Gut. 52(5), 720–728.
  68. Yasukawa K., Hirago A., Yamada K., Tun X., Ohkuma K., Utsumi H. (2019) In vivo redox imaging of dextran sodium sulfate-induced colitis in mice using Overhauser-enhanced magnetic resonance imaging. Free Radic. Biol. Med. 136, 1–11.
  69. Esworthy R.S., Steven Esworthy R., Aranda R., Martín M.G., Doroshow J.H., Binder S.W., Chu F.F. (2001) Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 281(3), G848–G855.
  70. Zhang H., Kuai X.Y., Yu P., Lin L., Shi R. (2012) Protective role of uncoupling protein-2 against dextran sodium sulfate-induced colitis. J. Gastroenterol. Hepatol. 27(3), 603–608.
  71. Rao R. (2008) Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front. Biosci. 13, 7210–7226.
  72. Gangwar R., Meena A.S., Shukla P.K., Nagaraja A.S., Dorniak P.L., Pallikuth S., Waters C.M., Sood A., Rao R. (2017) Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress. Biochem. J. 474(5), 731–749.
  73. Chu F.F., Esworthy R.S., Doroshow J.H., Grasberger H., Donko A., Leto T.L., Gao Q., Shen B. (2017) Deficiency in Duox2 activity alleviates ileitis in GPx1- and GPx2-knockout mice without affecting apoptosis incidence in the crypt epithelium. Redox Biol. 11, 144–156.
  74. Dashdorj A., Jyothi K.R., Lim S., Jo A., Nguyen M.N., Ha J., Yoon K.S., Kim H.J., Park J.H., Murphy M.P., Kim S.S. (2013) Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines. BMC Med. 11, 178.
  75. Bauer C., Duewell P., Mayer C., Lehr H.A., Fitzgerald K.A., Dauer M., Tschopp J., Endres S., Latz E., Schnurr M. (2010) Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut. 59(9), 1192–1199.
  76. Fedorov A.V., Chelombitko M.A., Chernyavskij D.A., Galkin I.I., Pletjushkina O.Y., Vasilieva T.V., Zinovkin R.A., Chernyak B.V. (2022) Mitochondria-targeted antioxidant SkQ1 prevents the development of experimental colitis in mice and impairment of the barrier function of the intestinal epithelium. Cells. 11(21), 3441.
  77. Gan H.T., Chen Y.Q., Ouyang Q. (2005) Sulfasalazine inhibits activation of nuclear factor-κB in patients with ulcerative colitis. J. Gastroenterol. Hepatol. 20(7), 1016–1024.
  78. Piechota-Polanczyk A., Fichna J. (2014) Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch. Pharmacol. 387(7), 605–620.
  79. Ji Y., Dai Z., Sun S., Ma X., Yang Y., Tso P., Wu G., Wu Z. (2018) Hydroxyproline attenuates dextran sulfate sodium-induced colitis in mice: involvment of the NF-κB signaling and oxidative stress. Mol. Nutr. Food Res. 62(21), e1800494.
  80. He Y., Li Z., Xu T., Luo D., Chi Q., Zhang Y., Li S. (2022) Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS drived-NF-κB/NLRP3 pathway. Chemosphere. 307(Pt. 1), 135662.
  81. Lifei-Luo, Zhang J., Li X., Zhu Y., Wang Y., Liu D. (2023) Sericic acid ameliorates DSS-induced ulcerative colitis in mice by modulating the NF-κB and Nrf2 pathways. Curr. Mol. Pharmacol. 16(7), 759‒770. https://doi.org/10.2174/1874467215666220928100319
  82. Yan H., Wang H., Zhang X., Li X., Yu J. (2015) Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice. Int. J. Clin. Exp. Med. 8(11), 20245–20253.
  83. Wang Z., Li S., Cao Y., Tian X., Zeng R., Liao D.F., Cao D. (2016) Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. O-xid. Med. Cell Longev. 2016, 9875298.
  84. Shlapakova T.I., Kostin R.K., Tyagunova E.E. (2020) Reactive oxygen species: participation in cellular processes and progression of pathology. Russ. J. Bioorg. Chem. 46(5), 657–674.
  85. Reutov V.P., Samosudova N.V., Sorokina E.G. (2019) A model of glutamate neurotoxicity and mechanisms of the development of the typical pathological process. Biophysics. 64(2), 233–250.
  86. Reutov V.P., Sorokina E.G. (2022) Causal relationship between physiological and pathological processes in the brain and in the gastrointestinal tract: the brain–intestine axis. Biophysics. 67(6), 972–986.
  87. McCafferty D.M. (2000) Peroxynitrite and inflammatory bowel disease. Gut. 46(3), 436–439.
  88. Chokshi N.K., Guner Y.S., Hunter C.J., Upperman J.S., Grishin A., Ford H.R. (2008) The role of nitric oxide in intestinal epithelial injury and restitution in neonatal necrotizing enterocolitis. Semin. Perinatol. 32(2), 92–99.
  89. Pavlick K.P., Laroux F.S., Fuseler J., Wolf R.E., Gray L., Hoffman J., Grisham M.B. (2002) Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic. Biol. Med. 33(3), 311–322.
  90. Abot A., Fried S., Cani P.D., Knauf C. (2022) Reactive oxygen species/reactive nitrogen species as messengers in the gut: impact on physiology and metabolic disorders. Antioxid. Redox Signal. 37(4‒6), 394–415.
  91. Predonzani A., Calì B., Agnellini A.H., Molon B. (2015) Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J. Exp. Med. 5(2), 64–76.
  92. Guan G., Lan S. (2018) Implications of antioxidant systems in inflammatory bowel disease. Biomed. Res. Int. 2018, 1290179.
  93. Theiss A.L., Idell R.D., Srinivasan S., Klapproth J.M., Jones D.P., Merlin D., Sitaraman S.V. (2007) Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J. 21(1), 197–206.
  94. Jackson D.N., Panopoulos M., Neumann W.L., Turner K., Cantarel B.L., Thompson-Snipes L., Dassopoulos T., Feagins L.A., Souza R.F., Mills J.C., Blumberg R.S., Venuprasad K., Thompson W.E., Theiss A.L. (2020) Mitochondrial dysfunction during loss of prohibitin 1 triggers Paneth cell defects and ileitis. Gut. 69(11), 1928–1938.
  95. Zhu J., Wang K.Z.Q., Chu C.T. (2013) After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy. 9(11), 1663–1676.
  96. Brookes P.S., Yoon Y., Robotham J.L., Anders M.W., Sheu S.S. (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 287(4), C817–C833.
  97. Perry S.W., Norman J.P., Barbieri J., Brown E.B., Gelbard H.A. (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 50(2), 98–115.
  98. Palikaras K., Tavernarakis N. (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56, 182–188.
  99. Palikaras K., Lionaki E., Tavernarakis N. (2015) Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ. 22(9), 1399–1401.
  100. Mancini N.L., Goudie L., Xu W., Sabouny R., Rajeev S., Wang A., Esquerre N., Al Rajabi A., Jayme T.S., van Tilburg Bernandes E., Nasser Y., Ferraz J.G.P., Shutt T., Shearer J., McKay D.M. (2020) Perturbed mitochondrial dynamics is a novel feature of colitis that can be targeted to lessen disease. Cell Mol. Gastroenterol. Hepatol. 10(2), 287–307.
  101. Mancini N.L., Rajeev S., Jayme T.S., Wang A., Keita Å.V., Workentine M.L., Hamed S., Söderholm J.D., Lopes F., Shutt T.E., Shearer J., McKay D.M. (2021) Crohn’s disease pathobiont adherent-invasive E. coli disrupts epithelial mitochondrial networks with implications for gut permeability. Cell Mol. Gastroenterol. Hepatol. 11(2), 551‒571.
  102. Nagai T., Abe A., Sasakawa C. (2005) Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J. Biol. Chem. 280(4), 2998–3011.
  103. Helle S.C.J., Feng Q., Aebersold M.J., Hirt L., Grüter R.R., Vahid A., Sirianni A., Mostowy S., Snedeker J.G., Šarić A., Idema T., Zambelli T., Kornmann B. (2017) Mechanical force induces mitochondrial fission. Elife. 6, 30292.
  104. Singh S.B., Ornatowski W., Vergne I., Naylor J., Delgado M., Roberts E., Ponpuak M., Master S., Pilli M., White E., Komatsu M., Deretic V. (2010) Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat. Cell Biol. 12(12), 1154–1165.
  105. Liu B., Gulati A.S., Cantillana V., Henry S.C., Schmidt E.A., Daniell X., Grossniklaus E., Schoenborn A.A., Sartor R.B., Taylor G.A. (2013) Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 305(8), G573–G584.
  106. Salem M., Ammitzboell M., Nys K., Seidelin J.B., Nielsen O.H. (2015) ATG16L1: a multifunctional susceptibility factor in Crohn disease. Autophagy. 11(4), 585–594.
  107. Ussakli C.H., Ebaee A., Binkley J., Brentnall T.A., Emond M.J., Rabinovitch P.S., Risques R.A. (2013) Mitochondria and tumor progression in ulcerative colitis. J. Natl. Cancer Inst. 105(16), 1239–1248.
  108. D’Errico I., Salvatore L., Murzilli S., Lo Sasso G., Latorre D., Martelli N., Egorova A.V., Polishuck R., Madeyski-Bengtson K., Lelliott C., Vidal-Puig A.J., Seibel P., Villani G., Moschetta A. (2011) Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) is a metabolic regulator of intestinal epithelial cell fate. Proc. Natl. Acad. Sci. USA. 108(16), 6603–6608.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (580KB)

版权所有 © Д.А. Чернявский, И.И. Галкин, А.Н. Павлюченкова, А.В. Фёдоров, М.А. Челомбитько, 2023

##common.cookie##