Low-Molecular Thiols as a Factor Improving the Sensitivity of Escherichia coli Mutants with Impaired Synthesis ADP-Heptose to Antibiotics

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Low molecular weight thiols as glutathione and cysteine are an important part of the cell’s redox regulation system. Previously, we have shown that inactivation of ADP-heptose synthesis in Escherichia coli during gmhA deletion induces the oxidative stress. It is accompanied by rearrangement of thiol homeostasis and increased sensitivity to antibiotics. In our study, we found that restriction of cysteine metabolism (∆cysB and ∆cysE) and inhibition of glutathione synthesis (∆gshAB) lead to a decrease in the sensitivity of the ∆gmhA mutant to antibiotics but not to its expected increase. At the same time, blocking of the export of cysteine (∆eamA) or increasing the of the import (Ptet-tcyP) into cells of oxidized form of cysteine -cystine leads to an even greater increase in the sensitivity of gmhA-deleted cells to antibiotics. In addition, there is no correlation between the cytotoxic effect of antibiotics and the level of reactive oxygen species (ROS), the total pool of thiols or the viability of the initial cell population. However, a correlation between the sensitivity to antibiotics and the level of oxidized glutathione in cells was found in our study. Apparently, a decrease in the content of low molecular weight thiols saves NADPH equivalents and limits the processes of protein redox modification. It leads to increasing of resistance of the ∆gmhA strain to antibiotics. On the contrary, an increase in low molecular weight thiols levels requires a greater expenditure of cell resources, leads to an increase in oxidized glutathione and induces to greater increase in sensitivity of the ∆gmhA strain to antibiotics.

Sobre autores

T. Seregina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: tatyana.s82@gmail.com
Russia, 119991, Moscow

I. Petrushanko

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: irina-pva@mail.ru
Russia, 119991, Moscow

P. Zaripov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: irina-pva@mail.ru
Russia, 119991, Moscow

Iu. Kuleshova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: irina-pva@mail.ru
Russia, 119991, Moscow

K. Lobanov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: irina-pva@mail.ru
Russia, 119991, Moscow

R. Shakulov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: irina-pva@mail.ru
Russia, 119991, Moscow

V. Mitkevich

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: irina-pva@mail.ru
Russia, 119991, Moscow

A. Makarov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: irina-pva@mail.ru
Russia, 119991, Moscow

A. Mironov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: irina-pva@mail.ru
Russia, 119991, Moscow

Bibliografia

  1. Shatalin K., Shatalina E., Mironov A., Nudler E. (2011) H2S: a universal defense against antibiotics in bacteria. Science. 334, 986–990. https://doi.org/10.1126/science.1209855
  2. Mironov A., Seregina T., Shatalin K., Nagornykh M., Shakulov R., Nudler E. (2020) CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides. Proc. Natl. Acad. Sci. USA. 117, 23565–53570. https://doi.org/10.1073/pnas.2007817117
  3. Mironov A., Seregina T., Nagornykh M., Luhachack L.G., Korolkova N., Lopes L.E., Kotova V., Zavilgelsky G., Shakulov R., Shatalin K., Nudler E. (2017) Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli. Proc. Natl. Acad. Sci. USA. 114, 6022–6027. https://doi.org/10.1073/pnas.1703576114
  4. Park S., Imlay J. (2003) High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J. Bacteriol. 185, 1942–1950. https://doi.org/10.1128/JB.185.6.1942-1950.2003
  5. Li X., Zhang T., Day N.J., Feng S., Gaffrey M.J., Qian W.-J. (2022) Defining the S-glutathionylation proteome by biochemical and mass spectrometric approaches. Antioxidants (Basel). 11, 2272. https://doi.org/10.3390/antiox11112272
  6. Hillion M., Antelmann H. (2015) Thiol-based redox switches in prokaryotes. Biol. Chem. 396, 415–444. https://doi.org/10.1515/hsz-2015-0102
  7. Seregina T.A., Petrushanko I.Yu., Shakulov R.S., Zaripov P.I., Makarov A.A., Mitkevich V.A., Mironov A.S. (2022) The inactivation of LPS biosynthesis genes in E. coli cells leads to oxidative stress. Cells. 11(17), 2667. https://doi.org/10.3390/cells11172667
  8. Jones D.P., Carlson J.L., Mody V.C., Cai J., Lynn M.J. Sternberg P. (2000) Redox state of glutathione in human plasma. Free Radic. Biol. Med. 28, 625–635. https://doi.org/10.1016/S0891-5849(99)00275-0
  9. Jovanovic M.Z., Lilic M., Savic D.J., Jovanovic G.N. (2003) The LysR-type transcriptional regulator CysB controls the repression of HslJ transcription in Escherichia coli. Microbiol. 149(Pt 12), 3449–3459.
  10. Hindson V.J. (2003) Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine. Biochem. J. 375, 745–752. https://doi.org/10.1042/bj20030429
  11. Chonoles Imlay K.R., Korshunov S., Imlay J.A. (2015) Physiological roles and adverse effects of the two cystine importers of Escherichia coli. J. Bacteriol. 197(23), 3629–3644. https://doi.org/10.1128/jb.00277-15
  12. Ohtsu I., Wiriyathanawudhiwong N., Morigasaki S., Nakatani T., Kadokura H., Takagi H. (2010) The L‑cystei-ne/L-cystine shuttle system provides reducing equivalents to the periplasm in Escherichia coli. J. Biol. Chem. 285, 17479–17487. https://doi.org/10.1074/jbc.M109.081356
  13. Masip L., Veeravalli K., Georgiou G. (2006) The many faces of glutathione in bacteria. Antioxid. Redox Signal. 8, 753–762. https://doi.org/10.1089/ars.2006.8.753
  14. Shatalin K., Shatalina E., Mironov A., Nudler E. (2011) H2S: a universal defense against antibiotics in bacteria. Science. 334, 986–990. https://doi.org/10.1126/science.1209855
  15. Серегина Т.А., Нагорных М.О., Лобанов К.В., Шакулов Р.С., Миронов А.С. (2018) Новая роль транскрипционного фактора СysB В деградации цистеина и образовании сероводорода в E. coli. Генетика. 54(11), 1237–1244.
  16. Mironov A., Seregina T., Shatalin K., Nagornykh M., Shakulov R., Nudler E. (2020) CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides. Proc. Natl. Acad. Sci. USA. 117, 23565–23570. https://doi.org/10.1073/pnas.2007817117
  17. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., Mori H. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008. https://doi.org/10.1038/msb4100050
  18. Miller J.H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Lab., ISBN 978-0-87969-106-6.
  19. Datsenko K.A., Wanner B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97, 6640–6645. https://doi.org/10.1073/pnas.120163297
  20. Kotova V.Yu., Manukhov I.V., Zavilgelskii G.B. (2010) Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress. Appl. Biochem. Microbiol. 46, 781–788. https://doi.org/10.1134/S0003683810080089
  21. Rahman I., Kode A., Biswas S.K. (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1, 3159–3165. https://doi.org/10.1038/nprot.2006.378
  22. Ohtsu I., Kawano Y., Suzuki M., Morigasaki S., Saiki K., Yamazaki S., Nonaka G., Takagi H. (2015) Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli. PLoS One. 10, e0120619. https://doi.org/10.1371/journal.pone.0120619
  23. Yamazaki S., Takei K., Nonaka G. (2016) YdjN encodes an S-sulfocysteine transporter required by Escherichia coli for growth on S-sulfocysteine as a sulfur source. FEMS Microbiol. Lett. 363, fnw185. https://doi.org/10.1093/femsle/fnw185
  24. Ulrich K., Jakob U. (2019) The role of thiols in antioxidant systems. Free Radic. Biol. Med. 140, 14–27. https://doi.org/10.1016/j.freeradbiomed.2019.05.035
  25. McDonagh B., Pedrajas J.R., Padilla C.A., Bárcena J.A. (2013) Thiol redox sensitivity of two key enzymes of heme biosynthesis and pentose phosphate pathways: uroporphyrinogen decarboxylase and transketolase. Oxid. Med. Cell. Longev. 2013, 932472. https://doi.org/10.1155/2013/932472
  26. Sobota J.M., Imlay J.A. (2011) Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc. Natl. Acad. Sci. USA. 108, 5402–5407. https://doi.org/10.1073/pnas.1100410108
  27. Korshunov S., Imlay K.R.C., Imlay J.A. (2020) Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Mol. Microbiol. 113, 22–39. https://doi.org/10.1111/mmi.14403
  28. Reitzer L., DiRita V.J. (2015) Death by cystine: an adverse emergent property from a beneficial series of reactions. J. Bacteriol. 197, 3626–3628. https://doi.org/10.1128/JB.00546-15
  29. Mieyal J., Gallogly M., Qanungo S., Liedhegner E., Shelton M. (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal. 10, 1941–1988. https://doi.org/10.1089/ars.2008.2089

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (645KB)
3.

Baixar (1MB)
4.

Baixar (216KB)
5.

Baixar (234KB)
6.

Baixar (116KB)

Declaração de direitos autorais © Т.А. Серегина, И.Ю. Петрушанко, П.И. Зарипов, Ю.Д. Кулешова, К.В. Лобанов, Р.С. Шакулов, В.А. Митькевич, А.А. Макаров, А.С. Миронов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies