The Role of Heat Shock Proteins in Plant Protection from Oxidative Stress

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The review considers the recent progress on the role of heat shock proteins (HSPs), as well as transcription factors of heat shock proteins (HSFs) in protecting plants from oxidative stress induced by various types of abiotic and biotic stresses. HSPs are pleiotropic proteins involved in various intracellular processes and performing many important functions. In particular, HSPs increase plant resistance to stress by protecting the structure and activity of proteins of the antioxidant system. Overexpression of Hsps genes under stressful conditions, leading to an increased content of HSP, can be used as a marker of oxidative stress. Plant HSFs are encoded by large gene families with variable sequences, expression and function. Plant HSFs regulate transcription of a wide range of stress-induced genes, including HSPs and other chaperones, reactive oxygen species scavengers, enzymes involved in protective metabolic reactions and osmolytic biosynthesis, or other transcriptional factors. Genome-wide analysis of Arabidodpsis, rice, poplar, lettuce and wheat revealed a complex network of interaction between Hsps and Hsfs gene families that form plant protection against oxidative stress. Plant protection systems are discussed, with special emphasis on the role of HSPs and HSFs in plant response to stress, which will be useful for the development of technologies to increase productivity and stress resistance of plant crops.

Авторлар туралы

N. Yurina

Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: nyurina@inbi.ras.ru
Russia, 119071, Moscow

Әдебиет тізімі

  1. Del Río L.A. (2015) ROS and RNS in plant physiology: an overview. J. Exp. Bot. 66, 2827–2837. https://doi.org/10.1093/jxb/erv099
  2. Xia X.J., Zhou Y.H., Shi K., Zhou J., Foyer C.H., Yu J.Q. (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 66, 2839–2856. https://doi.org/10.1093/jxb/erv089
  3. Mittler R. (2017) ROS are good. Trends Plant Sci. 22, 11–19. Trends Plant Sci. 22, 11– 19. https://doi.org/10.1016/j.tplants.2016.08.002
  4. Caverzan A., Piasecki C., Chavarria G., Stewart C.N., Jr., Vargas L (2019) Defenses against ROS in crops and weeds: the effects of interference and herbicides. Int. J. Mol. Sci. 20, 1086. https://doi.org/10.3390/ijms20051086
  5. Sewelam N., Kazan K., Hüdig M., Maurino V.G., Schenk P.M. (2019) The AtHSP17.4C1 gene expression is mediated by diverse signals that link biotic and abiotic stress factors with ROS and can be a useful molecular marker for oxidative stress. Int. J. Mol. Sci. 20, 3201. https://doi.org/10.3390/ijms20133201
  6. Mittler R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405– 410. https://doi.org/10.1016/s1360-1385(02)02312-9
  7. Ul Haq S., Khan A., Ali M., Khattak A.M., Gai W.X., Zhang H.X., Wei A.M., Gong Z.H. (2019) Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. Int. J. Mol. Sci. 20, 5321. https://doi.org/10.3390/ijms20215321
  8. Volkov R.A., Panchuk I.I., Mullineaux P.M., Schöffl F. (2006) Heat stress induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61, 733–746. https://doi.org/10.1007/s11103-006-0045-4
  9. Singh S.S., Tuteja N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  10. Katano K., Kohey Honda K., Suzuki N. (2018) Integration between ROS regulatory systems and other signals in the regulation of various types of heat responses in plants. Int. J. Mol. Sci. 19, 3370. https://doi.org/10.3390/ijms19113370
  11. Scarpeci T.E., Zanor M.I., Valle E.M. (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal. Behav. 3, 856–857. https://doi.org/10.4161/psb.3.10.6021
  12. Andrási N., Pettkó-Szandtner A., Szabados L. (2021) Diversity of plant heat shock factors: regulation, interactions, and functions. J. Exp. Botany. 72. 1558–1575. https://doi.org/10.1093/jxb/eraa576
  13. Suzuki N., Koussevitzky S., Mittler R., Miller G. (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 35, 259–270. https://doi.org/10.1111/j.1365-3040.2011.02336.x
  14. Юрина Н.П., Одинцова М.С. (2019) Ретроградная сигнальная система хлоропластов. Физиол. растений. 66, 243–255.
  15. Driedonks N., Xu J., Peters J.L., Park S., Rieu I. (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front. Plant Sci. 6, 999. https://doi.org/10.1134/S000629791510005310.3389/ fpls.2015.00999
  16. Hasanuzzaman M., Bhuyan M.H.M.B., Anee T.I., Parvin K., Nahar K., Mahmud J.A., Fujita M. (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants. 8, 384. https://doi.org/10.3390/antiox8090384
  17. Li Z.Y., Long R.C., Zhang T.J., Yang Q.C., Kang J.M. (2016) Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L. Mol. Biol. Rep. 43, 815–826. https://doi.org/10.1007/s11033-016-4008-9
  18. Muthusamy S.K., Dalal M., Chinnusamy V., Bansal K.C. (2017) Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J. Plant Physiol. 211, 100–113. https://doi.org/10.1016/j.jplph.2017.01.004
  19. Liu J., Pang X., Cheng Y., Yin Y., Zhang Q., Su W., Hu B., Guo Q., Ha S., Zhang J. Wan H. (2018) The Hsp70 gene family in Solanum tuberosum: genome-wide identification, phylogeny, and expression patterns. Sci. Rep. 8, 16628. https://doi.org/10.1038/s41598-018-34878-7
  20. Waters E.R., Vierling E. (2020) Plant small heat shock proteins – evolutionary and functional diversity. New Phytol. 227, 24–37. https://doi.org/10.1111/nph.16536
  21. Wang W., Vinocur B., Shoseyov O., Altman A. (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9, 244–252. https://doi.org/10.1016/j.tplants.2004.03.006
  22. Al-Whaibi M.H. (2011) Plant heat-shock proteins: a mini review. J. King Saud Univ.-Science. 23(2), 139–150. https://doi.org/10.1016/j.jksus.2010.06.022
  23. Chen B., Feder M.E., Kang L. (2018) Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol. Ecol. 27, 3040–3054. https://doi.org/10.1134/S000629791510005310.1111/ mec.14769
  24. Swindell W.R., Huebner M., Weber A.P. (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics. 8, 125. https://doi.org/10.1186/1471-2164-8-125
  25. Hu W., Hu G., Han B. (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci. 176, 583–590. https://doi.org/10.1016/j.plantsci.2009.01.016
  26. Zhang J., Liu B., Li J., Zhang L., Wang Y., Zheng H., Lu M., Chen J. (2015) Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics. 16, 181. https://doi.org/10.1186/s12864-015-1398-3
  27. Dudrez L., Causse S., Bonan N., Dumetier B. (2020) Heat-shock proteins: chaperoning DNA repair. Oncogene. 39, 516–529. https://doi.org/10.1038/s41388-019-1016-y
  28. Rutgers M., Muranaka L.S., Muhlhaus T., Sommer F., Thoms S., Schurig J., Willmund F., Schulz-Raffelt M., Schroda M. (2017) Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii. Plant Mol. Biol. 95, 579–591. https://doi.org/10.1134/S000629791510005310.1007/ s11103-017-0672-y
  29. Rosenzweig R., Nillegoda N.B., Mayer M.P., Bukau B. (2019) The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 20, 665–680. https://doi.org/10.1038/s41580-019-0133-3
  30. Jiang C., Xu J., Zhang H., Zhang X., Shi J., Li M., Ming F. (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ. 32, 1046–1059. https://doi.org/10.1111/j.1365-3040.2009.01987.x
  31. Kong F., Deng Y., Wang G., Wang J., Liang X., Meng Q. (2014) LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. J. Integr. Plant Biol. 56, 63–74. https://doi.org/10.1111/jipb.12119
  32. Song A., Zhu X., Chen F., Gao H., Jiang J., Chen S. (2014) A chrysanthemum heat shock protein confers tolerance to abiotic stress. Int. J. Mol. Sci. 15, 5063–5078. doi.org/https://doi.org/10.3390/ijms15035063
  33. Wang K., Zhang X., Goatley M., Ervin E. (2014) Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels. PLoS One. 9, 7. e102914. https://doi.org/10.1371/journal.pone.0102914
  34. Chankova S., Yurina N. (2012) Micro-algae as a model system for studying of genotype resistance to oxidative stress and adaptive response. In: Radiobiology and Environmental Security. Eds Mothersill C.E., Korogodina V., Seymour C.B. Dordrecht: Springer, pp. 19–30.
  35. Chankova S., Mitrovska Z., Miteva D., Oleskina Y.P., Yurina N.P. (2013) Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in Chlorella species from contrasting habitats. Gene. 516, 184–189. https://doi.org/10.1016/j.gene.2012.11.052
  36. Chankova S., Dimova E., Mitrovska Z., Miteva D., Mokerova D., Yonova P., Yurina N. (2014) Antioxidant and HSP70B responses in Chlamydomonas reinhardtii genotypes with different resistance to oxidative stress. Ecotoxicol. Environ. Safety. 101, 131–137. https://doi.org/10.1016/j.ecoenv.2013.11.015
  37. Chankova S.G., Yurina N.P. (2016) Chloroplast heat shock protein 70B as marker of oxidative stress. In: Heat Shock Proteins and Plants. Eds Asea A., Kaur P., Calderwood S. Springer. 10, 169–188. https://doi.org/10.1007/978-3-319-46340-7_9
  38. Fragkostefanakis S., Röth S., Schleiff E., Scharf K.-D. (2015) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks: Hsfs and Hsps for improvement of crop thermotolerance. Plant Cell Environ. 38, 1881–1895.https://doi.org/10.1111/pce.12396
  39. Tian F., Hu X.-L., Yao T., Yang X., Chen J.-G., Lu M.-Z., Zhang J. (2021) Recent advances in the roles of HSFs and HSPs in heat stress response in woody plants. Front. Plant Sci. 12, 704905. https://doi.org/10.3389/fpls.2021.704905
  40. Liu H., Charng Y. (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol. 163, 276–290. https://doi.org/10.1104/pp.113.221168
  41. Guo M, Liu J-H, Ma X, Luo D-X, Gong Z-H, Lu M-H. (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci. 7, 114. https://doi.org/10.3389/fpls.2016.00114
  42. Miller G., Mittler R. (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Botany. 98, 279–288. https://doi.org/10.1093/aob/mcl107
  43. Reddy P.S., Kavi Kishor P.B., Seiler C., Kuhlmann M., Eschen-Lippold L., Lee J., Reddy M.K., Sreenivasulu N. (2014) Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development. PLoS One. 9, e89125. https://doi.org/10.1371/journal.pone.0089125
  44. Yang Z., Wang Y., Gao Y., Zhou Y., Zhang E., Hu Y., Yuan Y., Liang G., Xu C. (2014) Adaptive evolution and divergent expression of heat stress transcription factors in grasses. BMC Evol. Biol. 14, 147. https://doi.org/10.1186/1471-2148-14-147
  45. Agarwal P., Khurana P. (2019) Functional characterization of HSFs from wheat in response to heat and other abiotic stress conditions. Funct. Integrat. Genom. 19, 497–513. https://doi.org/10.1007/s10142-019-00666-3
  46. Zhang H., Li G., Fu C., Duan S., Hu D., Guo X. (2020) Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci. Rep. 10, 8073. https://doi.org/10.1038/s41598-020-65068-z
  47. Jin G.H., Gho H.J., Jung K.H. (2013) A systematic view of rice heat shock transcription factor family using phylogenomic analysis. J. Plant Physiol. 170, 321–329.
  48. Wang X., Shi X., Chen S., Ma C., Xu S. (2018) Evolutionary origin, gradual accumulation and functional divergence of heat shock factor gene family with plant evolution. Front. Plant Sci. 9, 71.https://doi.org/10.3389/fpls.2018.00071
  49. Lin Y.-X., Jiang H.-Y., Chu Z.-X., Tang X.-L., Zhu S.-W., Cheng B.-J. (2011) Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics. 12, 76. https://doi.org/10.1186/1471-2164-12-76
  50. Zhang L., Zhao H.-K., Dong Q.-L., Zhang Y.-Y. Wang Y.-M., Li H.-Y., Xing G.-J., Li Q.-Y., Dong Y.-S. (2015) Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). Front. Plant Sci. 6, 773. https://doi.org/10.3389/fpls.2015.00773
  51. Scharf K.D., Berberich T., Ebersberger I., Nover L. (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim. Biophys. Acta. 1819, 104–119. https://doi.org/10.1016/j.bbagrm.2011.10.002
  52. Zhu J.-K. (2016) Abiotic stress signaling and responses in plants. Cell. 167, 313–324. https://doi.org/10.1016/j.cell.2016.08.029
  53. Rejeb I., Pastor V., Mauch-Mani B. (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants. 3, 458–475. https://doi.org/10.3390/plants3040458
  54. Li P.S., Yu T.F., He G.H., Chen M., Zhou Y.B., Chai S.C., Xu Z.S., Ma Y.Z. (2014) Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genomics. 15, 1009. https://doi.org/10.1186/1471-2164-15-1009
  55. Li M., Doll J., Weckermann K., Oecking C., Berendzen K.W., Schöffl F. (2010) Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Eur. J. Cell Biol. 89, 126–132. https://doi.org/10.1016/j.ejcb.2009.10.012
  56. Albihlal W.S., Obomighie I., Blein T., Persad R., Chernukhin I., Crespi M., Bechtold U., Mullineaux P.M. (2018) Arabidopsis heat shock transcription factora1b regulates multiple developmental genes under benign and stress conditions. J. Exp. Bot. 69, 2847–2862. https://doi.org/10.1093/jxb/ery142
  57. Qu A.L., Ding Y.F., Jiang Q., Zhu C. (2013) Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 432, 203–207. https://doi.org/10.1016/j.bbrc.2013.01.104
  58. Ikeda M., Mitsuda N., Ohme-Takagi M. (2011) Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol. 157, 1243–1254. https://doi.org/10.1104/pp.111.179036
  59. Bian X., Li W., Niu C., Wei W., Hu Y., Han J.-Q., Lu X., Tao J.-J., Jin M., Qin H., Zhou B., Wan-Ke Zhang W.-R., Ma B., Wang G.-D., Yu D.-Y., Lai Y.-C., Chen S.-Y., Zhang J.-S. (2020) A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. New Phytol. 225, 268–283. https://doi.org/10.1111/nph.16104
  60. Zhao J., Lu Z., Wang L., Jin B. (2021) Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. Int. J. Mol. Sci. 22, 117. https://doi.org/10.3390/ijms22010117
  61. Zhuang L., Cao W., Wang J., Yu J., Yang Z., Huang B. (2018) Characterization and functional analysis of FaHsfC1b from Festuca arundinacea conferring heat tolerance in Arabidopsis. Int. J. Mol. Sci. 19, 2702. https://doi.org/10.3390/ijms19092702
  62. Ding Y.L., Shi Y.T., Yang S.H. (2020) Molecular regulation of plant responses to environmental temperatures. Mol. Plant. 13, 544–564. https://doi.org/10.1016/j.molp.2020.02.004
  63. Schmidt R., Schippers J.H.M., Welker A., Mieulet D., Guiderdoni E., Mueller-Roeber B. (2012) Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. japonica. AoB PLANTS. pls011. https://doi.org/10.1093/aobpla/pls011
  64. Xue G.P., Sadat S., Drenth J., Mcintyre C.L. (2014) The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J. Exp. Bot. 65, 539–557. https://doi.org/10.1093/jxb/ert399
  65. Huang X.Y., Tao P., Li B.Y., Wang W.H., Yue Z.C., Lei J.L., Zhong X.M. (2015) Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis). Genet. Mol. Res. 14, 2189–2204. https://doi.org/10.4238/2015
  66. Mishra S.K., Tripp J., Winkelhaus S., Tschiersch B., Theres K., Nover L., Scharf K.D. (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Develop. 16, 1555–1567. https://doi.org/10.1101/gad.228802
  67. Yoshida T., Ohama N., Nakajima J., Kidokoro S., Mizoi J., Nakashima K., Maruyama K., Kim J.-M., Seki M., Todaka D., Osakabe Y., Sakuma Y., Schöffl F., Shinozaki K., Yamaguchi-Shinozaki K. (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock responsive gene expression. Mol. Genet. Genom. 286, 321–332. https://doi.org/10.1007/s00438-011-0647-7
  68. Li X.D., Wang X.L., Cai Y.M., Wu J.H., Mo B.T., Yu E.R. (2017) Arabidopsis heat stress transcription factors A2 (HSFA2) and A3 (HSFA3) function in the same heat regulation pathway. Acta Physiol. Plantarum. 39, 39–67. https://doi.org/10.1007/s11738-017-2351-7
  69. Singh A., Mittal D., Lavania D., Agarwal M., Mishra R.C., Grover A. (2012) OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.). Cell Stress Chaperones. 17, 243–254. https://doi.org/10.1007/s12192-011-0303-5
  70. Nishizawa A., Yabuta Y., Yoshida E., Maruta T., Yoshimura K., Shigeoka S. (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535–547. https://doi.org/10.1111/j.1365-313X.2006.02889.x
  71. Yoshida T., Sakuma Y., Todaka D. Maruyama K., Qin F., Mizoi J., Kidokoro S., Fujita Y., Shinozaki K., Yamaguchi-Shinozaki K. (2008) Functional analysis of an Arabidopsis heat-shock transcription factor H-sfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem. Biophys. Res. Commun. 368, 515–521. https://doi.org/10.1016/j.bbrc.2008.01.134
  72. Huang H.Y., Chang K.Y., Wu S.J. (2018) High irradiance sensitive phenotype of Arabidopsis hit2/xpo1a mutant is caused in part by nuclear confinement of AtHsfA4a. Biol. Plantarum. 62, 69–79. https://doi.org/10.1007/s10535-017-0753-4
  73. Andrási N., Rigó G., Zsigmond L., Pérez-Salamó I., Papdi C., Klement E., Pettkó-Szandtner A., Baba A.I., Ayaydin F., Dasari R., Cséplő A., Szabados L. (2019) The mitogen-activated protein kinase 4-phosphorylated heat shock factor A4A regulates responses to combined salt and heat stresses. J. Exp. Botany. 70, 4903–4918. https://doi.org/10.1093/jxb/erz217
  74. Pérez-Salamó I., Papdi C., Rigó G., Zsigmond L., Vilela B., Lumbreras V., Nagy I., Horváth B., Domoki M., Darula Z., Medzihradszky K., Bögre L., Koncz C., Szabados L. (2014) The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogenactivated protein kinases MPK3 and MPK6. Plant Physiol. 165, 319–334. https://doi.org/10.1104/pp.114.237891
  75. Zhu M.D., Zhang M., Gao D.J., Zhou K., Tang S.J., Zhou B., Lv Y.M. (2020) Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels. Int. J. Mol. Sci. 21, 1857. https://doi.org/10.3390/ijms21051857
  76. Lang S., Liu X., Xue H., Li X., Wang X. (2017) Functional characterization of BnHSFA4a as a heat shock transcription factor in controlling the re-establishment of desiccation tolerance in seeds. J. Exp. Botany. 68, 2361–2375. https://doi.org/10.1093/jxb/erx097
  77. Busch W., Wunderlich M., Schöffl F. (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 41, 1–14. https://doi.org/10.1111/j.1365-313X.2004.02272.x
  78. Schramm F., Ganguli A., Kiehlmann E., Englich G., Walch D., von Koskull-Döring P. (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol. Biol. 60, 759–772. https://doi.org/10.1007/s11103-005-5750-x
  79. Giesguth M., Sahm A., Simon S., Dietz K.J. (2015) Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Lett. 589, 718–725. https://doi.org/10.1016/j.febslet.2015.01.039
  80. Li H.C., Zhang H.N., Li G.L., Liu Z.H., Zhang Y.M., Zhang H.M., Guo X.L. (2015) Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis. Funct. Plant Biol. 42, 1080–1091. https://doi.org/10.1071/FP15080
  81. Chen S., Yu M., Li H., Wang H., Lu Z., Zhang Y., Liu M. et al. (2020) SaHsfA4c from Sedum alfredii Hance enhances cadmium tolerance by regulating ROS-scavenger activities and heat shock proteins expression. Front. Plant Sci. 11, 142. https://doi.org/10.3389/fpls.2020.00142
  82. Banti V., Loreti E., Novi G., Santaniello A., Alpi A., Perata P. (2008) Heat acclimation and cross-tolerance against anoxia in Arabidopsis. Plant Cell Environ. 31, 1029–1037. https://doi.org/10.1111/j.1365-3040.2008.01816.x
  83. Hu Y., Mesihovic A., Jiménez-Gómez J.M., Röth S., Gebhardt P., Bublak D., Bovy A., Scharf K.D., Schleiff E., Fragkostefanakis S. (2020) Natural variation in HsfA2 pre-mRNA splicing is associated with changes in thermotolerance during tomato domestication. New Phytologist. 225, 1297–1310. https://doi.org/10.1111/nph.16221
  84. Bigeard J., Hirt H. (2018) Nuclear signaling of plant MAPKs. Front. Plant Sci. 9, 469. https://doi.org/10.3389/fpls.2018.00469
  85. Evrard A., Kumar M., Lecourieux D., Lucks J., von Koskull-Döring P., Hirt H. (2013) Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. Peer J. 1, e59. https://doi.org/10.7717/peerj.59
  86. Rytz T.C., Miller M.J., McLoughlin F., Augustine R.C., Marshall R.S., Juan Y.T., Charng Y.Y., Scalf M., Smith L.M., Vierstra R.D. (2018) SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell. 30, 1077–1099. https://doi.org/10.1105/tpc.17.00993
  87. Liu J., Feng L., Li J., He Z. (2015) Genetic and epigenetic control of plant heat responses. Front. Plant Sci. 6, 267. https://doi.org/10.3389/fpls.2015.00267
  88. Xu Y., Zhang S., Lin S., Guo Y., Deng W., Zhang Y., Xue Y. (2017) WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucl. Acids Res. 45, D264–D270. https://doi.org/10.1093/nar/gkw1011
  89. Lämke J., Brzezinka K., Altmann S., Bäurle I. (2016) A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J. 35, 162–175. https://doi.org/10.15252/embj.201592593
  90. He Y., Li Z. (2018) Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming. Trends Genet. 34, 856–866. https://doi.org/10.1016/j.tig.2018.07.006
  91. Liu H.C., Lämke J., Lin S.Y., Hung M.J., Liu K.M., Charng Y.Y., Bäurle I. (2018) Distinct heat shock factors and chromatin modifications mediate the organautonomous transcriptional memory of heat stress. Plant J. 95, 401–413. https://doi.org/10.1111/tpj.13958
  92. Stief A., Brzezinka K., Lämke J., Bäurle I. (2014) Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant Signal. Beha-v. 9, e970430. https://doi.org/10.4161/15592316.2014.970430
  93. Singh R.K., Jaishankar J., Muthamilarasan M., Shweta S., Dangi A., Prasad M. (2016) Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci. Rep. 6, 32641, https://doi.org/10.1038/srep32641
  94. Kim T., Samraj S., Jiménez J., Gómez C., Liu T., Begcy K. (2021) Genome-wide identification of heat shock factors and heat shock proteins in response to UV and high intensity light stress in lettuce. BMC Plant Biol. 17, 185. https://doi.org/10.1186/s12870-021-02959-x
  95. Kumar A., Sharma S., Chunduri V., Kaur A., Kaur S., Malhotra N., Kumar A., Kapoor P., Kumari A., Kaur J., Sonah H., Garg M. (2020) Genome-wide identification and characterization of heat shock protein family reveals role in and stress conditions in Triticum aestivum L. Sci. Repts. 10, 7858. https://doi.org/10.1038/s41598-020-64746-2
  96. Duan S., Liu B., Zhang Y., Li G., Guo X. (2019) Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L. BMC Genomics. 20, 257. https://doi.org/10.1186/s12864-019-5617-1
  97. Huang J., Hai Z., Wang R., Yu Y., Chen X., Liang W., Wang H. (2022) Genome-wide analysis of HSP20 gene family and expression patterns under heat stress in cucumber (Cucumis sativus L.). Front. Plant. Sci. 13, 968418. https://doi.org/10.3389/fpls.2022.968418
  98. Hu Y., Zhang T., Liu Y., Li Y., Wang M., Zhu B., Liao D., Yun T., Huang W., Wen Zhang W., Yang Zhou Y. (2021) Pumpkin (Cucurbita moschata) HSP20 gene family identification and expression under heat stress. Front. Genet. 12, 753953. https://doi.org/10.1134/S0006297915100053 10.3389/fgene.2021.753953
  99. Metzger D.C.H., Hemmer-Hansen J., Schulte P.M. (2016) Conserved structure and expression of Hsp70 paralogs in teleost fishes. Compar. Biochem. Physiol. D Genom. Proteomics. 18, 10–20. https://doi.org/10.1016/j.cbd.2016.01.007
  100. Tang T., Yu A., Li P., Yang H., Liu G., Liu L. (2016) Sequence analysis of the Hsp70 family in moss and evaluation of their functions in abiotic stress responses. Sci. Rep. 6, 33650. https://doi.org/10.1038/srep33650
  101. Liu J., Wang R., Liu W., Zhang H., Guo Y., Wen R. (2018) Genome-wide characterization of heat-shock protein 70s from Chenopodium quinoa and expression analyses of Cqhsp70s in response to drought stress. Genes (Basel). 9, 35.https://doi.org/10.3390/genes9020035
  102. Su H., Xing M., Liu X., Fang Z., Yang L., Zhuang M., Zhang Y., Wang Y., Lv H. (2019) Genome-wide analysis of HSP70 family genes in cabbage (Brassica oleracea var. capitata) reveals their involvement in floral development. BMC Genomics. 20, 369. https://doi.org/10.1186/s12864-019-5757-3
  103. Rowarth N.M., Dauphinee A.N., Denbigh G.L., Gunawardena A.H. (2020) Hsp70 plays a role in programmed cell death during the remodelling of leaves of the lace plant (Aponogeton madagascariensis). J. Exp. Botany. 71, 907–918. https://doi.org/10.1093/jxb/erz447
  104. Schroda M., Vallon O., Wollman F.-A., Beck C.F. (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell. 11, 1165–1178.https://doi.org/10.1105/tpc.11.6.1165
  105. Chen Y., Chen X., Wang H., Bao Y., Zhang W. (2014) Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci. 12, 33. https://doi.org/10.1186/1477-5956-12-33
  106. Yu L., Wang W., Zeng S., Chen Z., Yang A., Shi J., Zhao X., Song B. (2018) Label-free quantitative proteomics analysis of cytosinpeptidemycin responses in Southern rice black-streaked dwarf virus-infected rice. Pestic. Biochem. Physiol. 147, 20–26. https://doi.org/10.1016/j.pestbp.2017.06.005
  107. Lavania D., Dhingra A., Siddiqui M.H., Al-Whaibi M.H., Grover A. (2015) Current status of the production of high temperature tolerant transgenic crops for cultivation in Warmer Climates. Plant Physiol. Biochem. 86, 100–108. https://doi.org/10.1016/j.plaphy.2014.11.019
  108. Rochaix J.-D. (2022) Chloroplast protein import machinery and quality control. FEBS J. 289, 6908–6918. https://doi.org/10.1111/febs.16464
  109. Suzuki N. (2023) Fine tuning of ROS, redox and energy regulatory systems associated with the functions of chloroplasts and mitochondria in plants under heat stress. Int. J. Mol. Sci. 24, 1356. https://doi.org/10.3390/ ijms24021356
  110. Zhu X., Huang C., Zhang L., Liu H., Yu J., Hu Z., Hua W. (2017) Systematic analysis of HsF family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses. Front. Plant Sci. 8, 1174. https://doi.org/10.3389/fpls.2017.01174
  111. Mishra D., Shekhar S., Singh D., Chakraborty S., Chakrabort N. (2018) Heat shock proteins and abiotic stress tolerance in plants. In: Regulation of Heat Shock Protein Responses, Heat Shock Proteins. 13, 41–69. https://doi.org/10.1007/978-3-319-74715-6_3
  112. Lohani N., Jain D., Singh M.B., Bhalla P.L. (2020) Engineering multiple abiotic stress tolerance in canola, Brassica napus. Front. Plant Sci. 11, 3. https://doi.org/10.3389/fpls.2020.00003

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (106KB)

© Н.П. Юрина, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>