Combinational Overexpression of Foxa3 and Hnf4a Enhance the Proliferation and Prolong the Functional Maintenance of Primary Hepatocytes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In an in vitro culture system, primary hepatocytes usually display a low proliferation capacity, accompanied with a decrease of viability and a loss of hepatocyte-specific functions. Previous studies have demonstrated that the combination introductions of certain hepatocyte-specific transcription factors are able to convert fibroblasts into functional hepatocyte-like cells. However, such combinational usage of transcription factors in primary hepatocytes culture has not yet sufficiently studied. The forkhead box protein A3 (FoxA3) and hepatocyte nuclear factor 4α (Hnf4α) are liver-enriched transcription factors that play vital roles in the differentiation, and maintenance of hepatocytes. Thus, we simultaneously overexpressed the two genes, Foxa3 and Hnf4a, in rat hepatocytes and observed that the combinational augmentation of these two transcription factors have enhanced the proliferation and stabilized the hepatocyte-specific functions of primary hepatocytes over a long-term culture period.

Негізгі сөздер

Авторлар туралы

J. Fan

Stem Cell and Biotherapy Engineering Research Center of Henan,
Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University,
East of JinSui Road 601; College of Life Science and Technology, Xinxiang Medical University, Henan; Shandong Tianchuan Precision Medical Technology Co. Ltd.

Email: linjtlin@126.com
China, 453003, Xinxiang; China, 453003, Xinxiang; China, 253084, Dezhou

G. Dama

Stem Cell and Biotherapy Engineering Research Center of Henan,
Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University,
East of JinSui Road 601; Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia

Email: linjtlin@126.com
China, 453003, Xinxiang; Malaysia, 13200, Kepala Batas

Y. Liu

Stem Cell and Biotherapy Engineering Research Center of Henan,
Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University,
East of JinSui Road 601; College of Life Science and Technology, Xinxiang Medical University, Henan

Email: linjtlin@126.com
China, 453003, Xinxiang; China, 453003, Xinxiang

W. Guo

College of Life Science and Technology, Xinxiang Medical University, Henan

Email: linjtlin@126.com
China, 453003, Xinxiang

J. Lin

Stem Cell and Biotherapy Engineering Research Center of Henan,
Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University,
East of JinSui Road 601; College of Life Science and Technology, Xinxiang Medical University, Henan; College of Biomedical Engineering, Xinxiang Medical University, Henan

Хат алмасуға жауапты Автор.
Email: linjtlin@126.com
China, 453003, Xinxiang; China, 453003, Xinxiang; China, 453003, Xinxiang

Әдебиет тізімі

  1. Taub R. (2004) Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell. Biol. 5, 836–847.
  2. Li A.P. (2007) Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem. Biol. Interact. 168, 16–29.
  3. Farinati F., Cardin R., D’Errico A., De Maria N., Naccarato R., Cecchetto A., Grigioni W. (1996) Hepatocyte proliferative activity in chronic liver damage as assessed by the monoclonal antibody MIB1 Ki67 in archival material: the role of etiology, disease activity, iron, and lipid peroxidation. Hepatology. 23, 1468–1475.
  4. Michalopoulos G.K., De Frances M.C. (1997) Liver regeneration. Science. 276, 60–66.
  5. Block G.D., Locker J., Bowen W.C., Petersen B.E., Katyal S., Strom S.C., Riley T., Howard T.A., Michalopoulos G.K. (1996) Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J. Cell. Biol. 132, 1133–1149.
  6. Mitaka T. (1998) The current status of primary hepatocyte culture. Int. J. Exp. Pathol. 79, 393–409.
  7. Wang J., Xu L., Chen Q., Zhang Y., Hu Y., Yan L. (2015) Bone mesenchymal stem cells overexpressing FGF4 contribute to liver regeneration in an animal model of liver cirrhosis. Int. J. Clin. Exp. Med. 8, 12774–12782.
  8. Berthiaume F., Moghe P.V., Toner M., Yarmush M.L. (1996) Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J. 10, 1471–1484.
  9. Takashi H., Katsumi M., Toshihiro A. (2007) Hepatocytes maintain their function on basement membrane formed by epithelial cells. Biochem. Biophys. Res. Commun. 359(1), 151–156.
  10. Cho C.H., Berthiaume F., Tilles A.W., Yarmush M.L. (2008) A new technique for primary hepatocyte expansion in vitro. Biotechnol. Bioeng. 101, 345–356.
  11. Tan G.D., Toh G.W., Birgersson E., Robens J., van Noort D., Leo H.L. (2013) A thin-walled polydimethylsiloxane bioreactor for high-density hepatocyte sandwich culture. Biotechnol. Bioeng. 110, 1663–1673.
  12. Paul D., Hohne M., Pinkert C., Piasecki A., Ummelmann E., Brinster R.L. (1988) Immortalized differentiated hepatocyte lines derived from transgenic mice harboring SV40 T-antigen genes. Exp. Cell. Res. 175, 354–362.
  13. Wege H., Le H.T., Chui M.S., Liu L., Wu J., Giri R., Malhi H., Sappal B.S., Kumaran V., Gupta S., Zern M.A. (2003) Telomerase reconstitution immortalizes human fetal hepatocytes without disrupting their differentiation potential. Gastroenterology. 124, 432–444.
  14. Tsuruga Y., Kiyono T., Matsushita M., Takahashi T., Kasai H., Matsumoto S., Todo S. (2008) Establishment of immortalized human hepatocytes by introduction of HPV16 E6/E7 and hTERT as cell sources for liver cell-based therapy. Cell. Transplant. 17, 1083–1094.
  15. Sekiya S., Suzuki A. (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 475, 390–393.
  16. Naldini L., Blomer U., Gallay P., Ory D., Mulligan R., Gage F.H., Verma I.M., Trono D. (1996) In vivo gene delivery and stable transduction of non dividing cells by a lentiviral vector. Science. 272, 263–267.
  17. Kingston R.E., Chen C.A., Okayama H. (2003) Calcium phosphate transfection. Curr. Protoc. Cell. Biol. 20, 20–23.
  18. Bowles N.E., Eisensmith R.C., Mohuiddin R., Pyron M., Woo S.L. (1996) A simple and efficient method for the concentration and purification of recombinant retrovirus for increased hepatocyte transduction in vivo. Hum. Gene. Ther. 7, 1735–1742.
  19. Lecluyse E.L., Alexandre E. (2010) Isolation and culture of primary hepatocytes from resected human liver tissue. Methods Mol. Biol. 640, 57–82.
  20. Schmittgen T.D., Livak K.J. (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat. Protoc. 3, 1101–1108.
  21. Yamada T., Yoshikawa M., Kanda S., Kato Y., Nakajima Y., Ishizaka S., Tsunoda Y. (2002) In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells. 20, 146–154.
  22. Shulman M., Nahmias Y. (2013) Long-term culture and coculture of primary rat and human hepatocytes. In: Epithelial Cell Culture Protocols: Second Edition. Eds Randell H.S., Fulcher L.M. Totowa, NJ: Humana Press, pp. 287–302.
  23. Schrem H., Klempnauer J., Borlak J. (2002) Liver-enriched transcription factors in liver function and development. Part I: The hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol. Rev. 54, 129–158.
  24. Huang P., He Z., Ji S., Sun H., Xiang D., Liu C., Hu Y., Wang X., Hui L. (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 475, 386–389.
  25. Du Y., Wang J., Jia J., Song N., Xiang C., Xu J., Hou Z., Su X., Liu B., Jiang T., Zhao D., Sun Y., Shu J., Guo Q., Yin M., Sun D., Lu S., Shi Y., Deng H. (2014) Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell. 14, 394–403.
  26. Huang P., Zhang L., Gao Y., He Z., Yao D., Xu J., Hou Z., Su X., Liu B., Jiang T., Zhao D., Sun Y., Shu J., Guo Q., Yin M., Sun D., Lu S., Shi Y., Deng H. (2014) Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 14, 370–384.
  27. Kim J., Kim K.P., Lim K.T., Lee S.C., Yoon J., Song G., Hwang S.I., Schöler H.R., Cantz T., Han D.W. (2015) Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Sci. Rep. 5, 15706.
  28. Tomizawa M., Shinozaki F., Motoyoshi Y., Sugiyama T., Yamamoto S., Ishige N. (2016) Transcription factors and medium suitable for initiating the differentiation of human induced pluripotent stem cells to the hepatocyte lineage. J. Cell. Biochem. 117, 2001—2009.
  29. Naiki T., Nagaki M., Asano T., Kimata T., Moriwaki H. (2005) Adenovirus-mediated hepatocyte nuclear factor-4α overexpression maintains liver phenotype in cultured rat hepatocytes. Biochem. Biophys. Res. Commun. 335, 496–500.
  30. Cirillo L.A., Lin F.R., Cuesta I., Friedman D., Jarnik M., Zaret K.S. (2002) Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell. 9, 279–289.
  31. Wangensteen K.J., Zhang S., Greenbaum L.E., Kaestner K.H. (2015) A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation. Genes Dev. 29, 904–909.
  32. Li J., Ning G., Duncan S.A. (2000) Mammalian hepatocyte differentiation requires the transcription factor HNF-4α. Genes Dev. 14, 464–474.
  33. Shen W., Scearce L.M., Brestelli J.E., Sund N.J., Kaestner K.H. (2001) Foxa3 (hepatocyte nuclear factor 3γ) is required for the regulation of hepatic GLUT2 expression and the maintenance of glucose homeostasis during a prolonged fast. J. Biol. Chem. 276, 42812–42817.
  34. Parviz F., Matullo C., Garrison W.D., Savatski L., Adamson J.W., Ning G., Kaestner K.H., Rossi J.M., Zaret K.S., Duncan S.A. (2003) Hepatocyte nuclear factor 4α controls the development of a hepatic epithelium and liver morphogenesis. Nat. Genet. 34, 292–296.
  35. Liu K., Guo M.G., Lou X.L., Li X.Y., Xu Y., Ji W.D., Huang X.D., Yang J.H., Duan J.C. (2015) Hepatocyte nuclear factor 4α induces a tendency of differentiation and activation of rat hepatic stellate cells. World J. Gastroenterol. 21, 5856–5866.
  36. Klocke R., Gomez-Lechon M.J., Ehrhardt A., Mendoza-Figueroa T., Donato M.T., López-Revilla R., Castell J.V., Paul D. (2002) Establishment and characterization of immortal hepatocytes derived from various transgenic mouse lines. Biochem. Biophys. Res. Commun. 294, 864‒871.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© J.Y. Fan, G. Dama, Y.L. Liu, W.Y. Guo, J.T. Lin, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».