Dynamic Changes in the Activity and Content of Particular Proteasome Forms in Cerebral Cortex of C57BL/6 Mice during Aging

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Proteasomes are key components of the ubiquitin-proteasome system. Various forms of proteasomes are known. During aging, disturbances in the functioning of proteasomes were revealed, as well as an increased expression of their individual forms. Considering these data, we studied the expression of genes encoding the constitutive and immune subunits of proteasomes in the cerebral cortex samples from C57BL/6 mice at the age of 60, 190, 380, and 720 days. In addition, the content of constitutive and immune proteasome subunits, chymotrypsin-like and caspase-like activities of proteasome pools, as well as the activity of the β5i immune subunit were studied in tissue homogenates. The chymotrypsin-like activity and the activity of the β5i subunit of different forms of proteasomes separated by electrophoresis under native conditions were characterized. Compared with samples from young animals, in the cerebral cortex of animals aged 720 days the following changes in the expression patterns of proteasome genes were revealed: a decrease in the expression of PSMB5 gene encoding the constitutive proteasome subunit β5; activation of genes encoding immune subunits β5i and β1i. In clarified tissue homogenates of aged mice, an increase in the content of immune subunits β1i and β2i was shown. In samples from old animals, decreased chymotrypsin-like activity and a tendency to a decrease in caspase-like activity of proteasomes as well as the β5i subunit activity were also revealed. Analysis of the activity of native complexes in the tissues of old animals revealed decreased chymotrypsin-like activity of both 26S and 20S proteasomes containing the β5i subunit. Based on the data obtained, it can be assumed that changes in the pool of non-constitutive proteasomes reflect aging-associated adaptive processes in mouse brain.

作者简介

A. Burov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 119991, Moscow

S. Funikov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 119991, Moscow

T. Astakhova

Koltsov Institute of Developmental Biology, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 119334, Moscow

E. Teterina

Institute of Physiologically Active Substances, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 142432, Moscow Region, Chernogolovka

V. Nebogatikov

Institute of Physiologically Active Substances, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 142432, Moscow Region, Chernogolovka

P. Erokhov

Koltsov Institute of Developmental Biology, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 119334, Moscow

A. Ustyugov

Institute of Physiologically Active Substances, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 142432, Moscow Region, Chernogolovka

V. Karpov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 119991, Moscow

A. Morozov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: Runkel@inbox.ru
Russia, 119991, Moscow

参考

  1. Ciechanover A., Kwon Y.T. (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 47, e147.
  2. Ferrington D.A., Gregerson D.S. (2012) Immunoproteasomes: structure, function, and antigen presentation. Prog. Mol. Biol. Transl. Sci. 109, 75–112.
  3. Morozov A.V., Karpov V.L. (2018) Biological consequences of structural and functional proteasome diversity. Heliyon. 4, e00894.
  4. Chondrogianni N., Petropoulos I., Franceschi C., Friguet B., Gonos E.S. (2000) Fibroblast cultures from healthy centenarians have an active proteasome. Exp. Gerontol. 35, 721–728.
  5. Husom A.D., Peters E.A., Kolling E.A., Fugere N.A., Thompson L.V., Ferrington D.A. (2004) Altered proteasome function and subunit composition in aged muscle. Arch. Biochem. Biophys. 421, 67–76.
  6. Ferrington D.A., Husom A.D., Thompson L.V. (2005) Altered proteasome structure, function, and oxidation in aged muscle. FASEB J. 19, 644–646.
  7. Gavilán M.P., Castaño A., Torres M., Portavella M., Caballero C., Jiménez S., García-Martínez A., Parrado J., Vitorica J., Ruano D. (2009) Age-related increase in the immunoproteasome content in rat hippocampus: molecular and functional aspects. J. Neurochemistry. 108, 260–272.
  8. Giannini C., Kloß A., Gohlke S., Mishto M., Nicholson T.P., Sheppard P.W., Kloetzel P.M., Dahlmann B. (2013) Poly-Ub-substrate-degradative activity of 26S proteasome is not impaired in the aging rat brain. PLoS One. 7, e64042.
  9. Морозов А.В., Буров А.В., Фуников С.Ю., Тетерина Е.В., Астахова Т.М., Ерохов П.А., Устюгов А.А., Карпов В.Л. (2023) Изменения активности и содержания отдельных форм протеасом в образцах коры головного мозга при развитии патологии у мышей линии 5×FAD. Молекуляр. биология. 57(5), 873–885.
  10. Фуников С.Ю. Спасская Д.С., Буров А.В., Тетерина Е.В., Устюгов А.А., Карпов В.Л., Морозов А.В. (2021) Отделы центральной нервной системы мыши отличаются по количеству транскриптов протеасомных генов. Молекуляр. биология. 55(1), 54–63.
  11. Erokhov P.A., Lyupina Y.V., Radchenko A.S., Kolacheva A.A., Nikishina Y.O., Sharova N.P. (2017) Detection of active proteasome structures in brain extracts: proteasome features of August rat brain with violations in monoamine metabolism. Oncotarget. 8, 70941–70957.
  12. Morozov A.V., Kulikova A.A., Astakhova T.M., Mitkevich V.A., Burnysheva K.M., Adzhubei A.A., Erokhov P.A., Evgen’ev M.B., Sharova N.P., Karpov V.L., Makarov A.A. (2016) Amyloid-β increases activity of proteasomes capped with 19S and 11S regulators. J. Alzheimers Dis. 54, 763–776.
  13. Chondrogianni N., Stratford F.L., Trougakos I.P., Friguet B., Rivett A.J., Gonos E.S. (2003) Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J. Biol. Chem. 278, 28026–28037.
  14. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. (2013) The hallmarks of aging. Cell. 153, 1194–1217.
  15. Saez I., Vilchez D. (2014) The mechanistic links between proteasome activity, aging and agerelated diseases. Curr. Genomics. 15, 38–51.
  16. Ly D.H., Lockhart D.J., Lerner R.A., Schultz P.G. (2000) Mitotic misregulation and human aging. S-cience. 287, 2486–2492.
  17. Pickering A.M., Koop A.L., Teoh C.Y., Ermak G., Grune T., Davies K.J. (2010) The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem. J. 432, 585–595.
  18. Pickering A.M., Davies K.J.A. (2012) Degradation of damaged proteins: the main function of the 20S proteasome. Prog. Mol. Biol. Transl. Sci. 109, 227–248.
  19. Grune T., Jung T., Merker K., Davies K.J. (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 36, 2519–2530.
  20. Abi Habib J., De Plaen E., Stroobant V., Zivkovic D., Bousquet M.P., Guillaume B., Wahni K., Messens J., Busse A., Vigneron N., Van den Eynde B.J. (2020) Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins. Sci. Rep. 10, 15765.
  21. Sparkman N.L., Johnson R.W. (2008) Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation. 15, 323–330.
  22. Stratford F.L., Chondrogianni N., Trougakos I.P., Gonos E.S., Rivett A.J. (2006) Proteasome response to interferon-γ is altered in senescent human fibroblasts. FEBS Lett. 580, 3989–3994.
  23. Powell S.R., Wang P., Divald A., Teichberg S., Haridas V., McCloskey T.W., Davies K.J., Katzeff H. (2005) Aggregates of oxidized proteins (lipofuscin) induce apoptosis through proteasome inhibition and dysregulation of proapoptotic proteins. Free Radic. Biol. Med. 38, 1093–1101.
  24. Johnston-Carey H.K., Pomatto L.C.D., Davies K.J.A. (2015) The immunoproteasome in oxidative stress, aging, and disease. Crit. Rev. Biochem. Mol. Biol. 51, 268–281.
  25. Pérez V.I., Buffenstein R., Masamsetti V., Leonard S., Salmon A.B., Mele J., Andziak B., Yang T., Edrey Y., Friguet B., Ward W., Richardson A., Chaudhuri A. (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc. Natl. Acad. Sci. USA. 106, 3059–3064.
  26. Ungvari Z., Csiszar A., Sosnowska D., Philipp E.E., Campbell C.M., McQuary P.R., Chow T.T., Coelho M., Didier E.S., Gelino S., Holmbeck M.A., Kim I., Levy E., Sonntag W.E., Whitby P.W., Austad S.N., Ridgway I. (2013) Testing predictions of the oxidative stress hypothesis of aging using a novel invertebrate model of longevity: the giant clam (Tridacna derasa). J. Gerontol. A Biol. Sci. Med. Sci. 68, 359–367.
  27. Pickering A.M., Lehr M., Miller R.A. (2015) Lifespan of mice and primates correlates with immunoproteasome expression. J. Clin. Invest. 125, 2059–2068.
  28. Chondrogianni N., Voutetakis K., Kapetanou M., Delitsikou V., Papaevgeniou N., Sakellari M., Lefaki M., Filippopoulou K., Gonos E.S. (2015) Proteasome activation: an innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res. Rev. 23, 37–55.
  29. Chondrogianni N., Voutetakis K., Kapetanou M., Delitsikou V., Papaevgeniou N., Sakellari M., Lefaki M., Filippopoulou K., Gonos E.S. (2005) Overexpression of proteasome β5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J. Biol. Chem. 280, 11840–11850.
  30. Tonoki A., Kuranaga E., Tomioka T., Hamazaki J., Murata S., Tanaka K., Miura M. (2009) Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol. Cell Biol. 29, 1095–1106.
  31. Vilchez D., Morantte I., Liu Z., Douglas P.M., Merkwirth C., Rodrigues A.P., Manning G., Dillin A. (2012) RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature. 489, 263–268.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (92KB)
3.

下载 (590KB)
4.

下载 (73KB)
5.

下载 (505KB)

版权所有 © А.В. Буров, С.Ю. Фуников, Т.М. Астахова, Е.В. Тетерина, В.О. Небогатиков, П.А. Ерохов, А.А. Устюгов, В.Л. Карпов, А.В. Морозов, 2023

##common.cookie##