Changes in the Activity and Content of Individual Forms of Proteasomes in Samples of the Cerebral Cortex during Pathology Development in 5xFAD Mice

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The ubiquitin-proteasome system (UPS) provides hydrolysis of most intracellular proteins in proteasomes. There are various forms of proteasomes differing, among other things, in the set of proteolytic subunits and the presence of activators. Alzheimer’s disease (AD) is characterized by disturbances in the functional state of the UPS. At the same time, an increase in the expression of certain forms of proteasomes, in particular, proteasomes containing immune subunits (non-constitutive proteasomes), was shown. Here, we studied dynamic changes in the expression of catalytic proteasome subunit genes and protein content in the cerebral cortex of animals using a mouse model of AD (5xFAD transgenic mice). In samples from 5xFAD mice, at the age of 380 days, compared with samples from mice of 60 days of age, 4 and 6 times more gene transcripts of the immune subunits PSMB9 and PSMB8 were detected, as well as a significant increase in the number of immune β-subunits (2.8 times – β1i, 2.2 times – β2i) was observed. The results obtained indicate activation of the synthesis of immune subunits and assembly of non-constitutive proteasomes at the terminal stage of pathology development. At the same time, the results of electrophoresis in native conditions indicate the activation of both 20S and 26S proteasomes containing immune subunits in samples from 5xFAD mice, 380 days of age. The obtained data, in combination with available literature, indicate that the activation of non-constitutive proteasomes is a universal phenomenon characteristic of various animal models of AD, that may reflect both the development of neuroinflammation and adaptive processes in tissues.

Sobre autores

А. Morozov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: Runkel@inbox.ru
Russia, 119991, Moscow

A. Burov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 119991, Moscow

S. Funikov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 119991, Moscow

E. Teterina

Institute of Physiologically Active Substances, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 142432, Moscow Region, Chernogolovka

T. Astakhova

Koltsov Institute of Developmental Biology, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 119334, Moscow

P. Erokhov

Koltsov Institute of Developmental Biology, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 119334, Moscow

A. Ustyugov

Institute of Physiologically Active Substances, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 142432, Moscow Region, Chernogolovka

V. Karpov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: Runkel@inbox.ru
Russia, 119991, Moscow

Bibliografia

  1. Ciechanover A., Kwon Y.T. (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 47, e147–e147.
  2. Morozov A.V., Karpov V.L. (2018) Biological consequences of structural and functional proteasome diversity. Heliyon. 4, e00894.
  3. Kovacs G.G. (2017) Concepts and classification of neurodegenerative diseases. Handb. Clin. Neurol. 145, 301‒307.
  4. Fernández-Cruz I., Reynaud E. (2021) Proteasome subunits involved in neurodegenerative diseases. Arch. Med. Res. 52, 1–14.
  5. Schmidt M.F., Gan Z.Y., Komander D., Dewson G. (2021) Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ. 28, 570–590.
  6. Dantuma N.P., Bott L.C. (2014) The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front. Mol. Neurosci. 7, 70.
  7. Thibaudeau T.A., Anderson R.T., Smith D.M. (2018) A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat. Commun. 9, 1097.
  8. d’Errico P., Meyer-Luehmann M. (2020) Mechanisms of pathogenic Tau and Aβ protein spreading in Alzheimer’s disease. Front. Aging Neurosci. 12, 265.
  9. Hegde A.N., Smith S.G., Duke L.M., Pourquoi A., Vaz S. (2019) Perturbations of ubiquitin-proteasome-mediated proteolysis in aging and Alzheimer’s disease. Front. Aging Neurosci.11, 324.
  10. Keller J.N., Hanni K.B., Markesbery W.R. (2001) Impaired proteasome function in Alzheimer’s disease. J. Neurochem. 75, 436–439.
  11. Almeida C.G., Takahashi R.H., Gouras G.K. (2006) Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J. Neurosci. 26, 4277–4288.
  12. Oh S., Hong H.S., Hwang E., Sim H.J., Lee W., Shin S.J., Mook-Jung I. (2005) Amyloid peptide attenuates the proteasome activity in neuronal cells. Mech. Ageing Dev.126, 1292–1299.
  13. Tseng B.P., Green K.N., Chan J.L., Blurton-Jones M., LaFerla F.M. (2008) Abeta inhibits the proteasome and enhances Amyloid and Tau accumulation. Neurobiol. Aging. 29, 1607–1618.
  14. Song S., Kim S.Y., Hong Y.M., Jo D.G., Lee J.Y., Shim S.M., Chung C.W., Seo S.J., Yoo Y.J., Koh J.Y., Lee M.C., Yates A.J., Ichijo H., Jung Y.K. (2003) Essential role of E2-25K/Hip-2 in mediating amyloid-beta neurotoxicity. Mol. Cell. 12, 553–563.
  15. Song S., Lee H., Kam T.I., Tai M.L., Lee J.Y., Noh J.Y., Shim S.M., Seo S.J., Kong Y.Y., Nakagawa T., Chung C.W., Choi D.Y., Oubrahim H., Jung Y.K. (2008) E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated Aβ neurotoxicity. J. Cell Biol. 182, 675–684.
  16. Liu Y., Hettinger C.L., Zhang D., Rezvani K., Wang X., Wang H. (2014) The proteasome function reporter GFPu accumulates in young brains of the APPswe/PS1dE9 Alzheimer’s disease mouse model. Cell Mol. Neurobiol. 34, 315–322.
  17. Orre M., Kamphuis W., Dooves S., Kooijman L., Chan E.T., Kirk C.J., Dimayuga Smith V., Koot S., Mamber C., Jansen A.H., Ovaa H., Hol E.M. (2013) Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain. 136, 1415–1431.
  18. Guglielmotto M., Monteleone D., Vasciaveo V., Repetto I.E., Manassero G., Tabaton M., Tamagno E. (2017) The decrease of Uch-L1 activity is a common mechanism responsible for Aβ 42 accumulation in Alzheimer’s and vascular disease. Front. Aging Neurosci. 9, 320.
  19. Kaneko M., Koike H., Saito R., Kitamura Y., Okuma Y., Nomura Y. (2010) Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J. Neurosci. 30, 3924–3932.
  20. Bonet-Costa V., Pomatto L.C.-D., Davies K.J.A. (2016) The proteasome and oxidative stress in Alzheimer’s disease. Antioxid. Redox Signal. 25, 886–901.
  21. Lloret A., Badia M.C., Giraldo E., Ermak G., Alonso M.D., Pallardó F.V., Davies K.J., Viña J. (2011) Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer’s disease. J. Alzheimers Dis. 27, 701–709.
  22. Keck S., Nitsch R., Grune T., Ullrich O. (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J. Neurochem. 85, 115–122.
  23. Mishto M., Bellavista E., Santoro A., Stolzing A., Ligorio C., Nacmias B., Spazzafumo L., Chiappelli M., Licastro F., Sorbi S., Pession A., Ohm T., Grune T., Franceschi C. (2006) Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol. Aging. 27, 54–66.
  24. Jawhar S., Trawicka A., Jenneckens C., Bayer T.A., Wirths O. (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5xFAD mouse model of Alzheimer’s disease. Neurobiol. Aging. 33, 196.e29–40.
  25. Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., Van Eldik L., Berry R., Vassar R. (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140.
  26. Richard B.C., Kurdakova A., Baches S., Bayer T.A., Weggen S, Wirths O. (2015) Gene dosage dependent aggravation of the neurological phenotype in the 5xFAD mouse model of Alzheimer’s disease. J. Alzheimers Dis. 45, 1223–1236.
  27. Фуников С.Ю. Спасская Д.С., Буров А.В., Тетерина Е.В., Устюгов А.А., Карпов В.Л., Морозов А.В. (2021) Отделы центральной нервной системы мыши отличаются по количеству транскриптов протеасомных генов. Молекуляр. биология. 55, 54–63.
  28. Morozov A.V., Astakhova T.M., Garbuz D.G., Krasnov G.S., Bobkova N.V., Zatsepina O.G., Karpov V.L., Evgen’ev M.B. (2017) Interplay between recombinant Hsp70 and proteasomes: proteasome activity modulation and ubiquitin-independent cleavage of Hsp70. Cell. Stress Chaperones. 22, 687–697.
  29. Morozov A., Astakhova T., Erokhov P., Karpov V. (2022) The ATP/Mg2+ Balance affects the degradation of short fluorogenic substrates by the 20S proteasome. Methods Protoc. 5, 15.
  30. Erokhov P.A., Lyupina Y.V., Radchenko A.S., Kolacheva A.A., Nikishina Y.O., Sharova N.P. (2017) Detection of active proteasome structures in brain extracts: proteasome features of August rat brain with violations in monoamine metabolism. Oncotarget. 8, 70941–70957.
  31. Hardy J., Selkoe D.J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 297, 353–356.
  32. LaFerla F.M., Green K.N., Oddo S. (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat. Rev. Neurosci. 8, 499–509.
  33. de Vrij F.M., Fischer D.F., van Leeuwen F.W., Hol E.M. (2004) Protein quality control in Alzheimer’s disease by the ubiquitin proteasome system. Prog. Neurobiol. 74, 249–270.
  34. Aso E., Lomoio S., López-González I., Joda L., Carmona M., Fernández-Yagüe N., Moreno J., Juvés S., Pujol A., Pamplona R., Portero-Otin M., Martín V., Díaz M., Ferrer I. (2012) Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer’s disease. Brain Pathol. 22, 636–653
  35. Wagner L.K., Gilling K.E., Schormann E., Kloetzel P.M., Heppner F.L., Krüger E., Prokop S. (2017) Immunoproteasome deficiency alters microglial cytokine response and improves cognitive deficits in Alzheimer’s disease-like APPPS1 mice. Acta Neuropathol. Commun. 24, 52.
  36. Lemprière S. (2023) Neuroinflammation, not amyloid-β deposition, associated with brain network dysfunction in AD. Nat. Rev. Neurol. 19, 66.
  37. Yeo I.J., Lee M.J., Baek A., Miller Z., Bhattarai D., Baek Y.M., Jeong H.J., Kim Y.K., Kim D.E., Hong J.T., Kim K.B. (2019) A dual inhibitor of the proteasome catalytic subunits LMP2 and Y attenuates disease progression in mouse models of Alzheimer’s disease. Sci. Rep. 5, 18393.
  38. Lee M.J., Bhattarai D., Jang H., Baek A., Yeo I.J., Lee S., Miller Z., Lee S., Hong J.T., Kim D.E., Lee W., Kim K.B. (2021) Macrocyclic immunoproteasome inhibitors as a potential therapy for Alzheimer’s disease. J. Med. Chem. 12, 10934–10950.
  39. Tönnies E., Trushina E. (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 57, 1105–1121.
  40. Butterfield D.A. (2002) Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic. Res. 36, 1307–1313.
  41. Pickering A.M., Koop A.L., Teoh C.Y., Ermak G., Grune T., Davies K.J. (2010) The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem. J. 432, 585–595.
  42. Bi M., Du X., Xiao X., Dai Y., Jiao Q., Chen X., Zhang L., Jiang H. (2021) Deficient immunoproteasome assembly drives gain of α-synuclein pathology in Parkinson’s disease. Redox Biol. 47, 102167.
  43. Gillardon F., Kloss A., Berg M., Neumann M., Mechtler K., Hengerer B., Dahlmann B. (2007) The 20S proteasome isolated from Alzheimer’s disease brain shows post-translational modifications but unchanged proteolytic activity. J. Neurochem. 101, 1483–1490.
  44. Bashore C., Dambacher C.M., Goodall E.A., Matyskiela M.E., Lander G.C., Martin A. (2015) Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Mol. Biol. 22, 712–719.
  45. Bech-Otschir D., Helfrich A., Enenkel C., Consiglieri G., Seeger M., Holzhütter H.G., Dahlmann B., Kloetzel P.M. (2009) Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat. Struct. Mol. Biol. 16, 219–225.
  46. Li X., Demartino G.N. (2009) Variably modulated gating of the 26S proteasome by ATP and polyubiquitin. Biochem. J. 421, 397–404.
  47. Collins G.A., Goldberg A.L. (2017) The logic of the 26S proteasome. Cell. 169, 792–806.
  48. Peth A., Besche H.C., Goldberg A.L. (2009) Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell. 36, 794–804.
  49. Guo Q., Lehmer C., Martínez-Sánchez A., Rudack T., Beck F., Hartmann H., Pérez-Berlanga M., Frottin F., Hipp M.S., Hartl F.U., Edbauer D., Baumeister W., Fernández-Busnadiego R. (2018) In situ structure of neuronal C9orf72 Poly-GA aggregates reveals proteasome recruitment. Cell. 172, 696–705.e12.
  50. Gregori L., Fuchs C., Figueiredo-Pereira M.E., Van Nostrand W.E., Goldgaber D. (1995) Amyloid beta-protein inhibits ubiquitin-dependent protein degradation in vitro. J. Biol. Chem. 270, 19702–19708.
  51. Gregori L., Hainfeld J.F., Simon M.N., Goldgaber D. (1997) Binding of amyloid beta protein to the 20S proteasome. J. Biol. Chem. 272, 58–62.
  52. Lopez Salon M., Pasquini L., Besio Moreno M., Pasquini J.M., Soto E. (2003) Relationship between beta-amyloid degradation and the 26S proteasome in neural cells. Exp. Neurol. 180, 131–143.
  53. Zhao X., Yang J. (2010) Amyloid-β peptide is a substrate of the human 20S proteasome. ACS Chem. Neurosci. 1, 655–660.
  54. Morozov A.V., Kulikova A.A., Astakhova T.M., Mitkevich V.A., Burnysheva K.M., Adzhubei A.A., Erokhov P.A., Evgen’ev M.B., Sharova N.P., Karpov V.L., Makarov A.A. (2016) Amyloid-β increases activity of proteasomes capped with 19S and 11S regulators. J. Alzheimers Dis. 54, 763–776.
  55. Hirano H., Kimura Y., Kimura A. (2016) Biological significance of co- and post-translational modifications of the yeast 26S proteasome. J. Proteomics. 134, 37–46.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (77KB)
3.

Baixar (230KB)
4.

Baixar (327KB)
5.

Baixar (393KB)
6.

Baixar (479KB)
7.

Baixar (110KB)
8.

Baixar (589KB)

Declaração de direitos autorais © А.В. Морозов, А.В. Буров, С.Ю. Фуников, Е.В. Тетерина, Т.М. Астахова, П.А. Ерохов, А.А. Устюгов, В.Л. Карпов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies