Identification of Clinical Isolates of Bacillus cereus Group and Their Characterization by Mass Spectrometry and Electron Microscopy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Bacillus cereus is a spore-forming bacterium found in the environment mainly in soil. Bacillus spores are known to be extremely resistant not only to environmental factors, but also to various sanitation regimes. This leads to spore contamination of toxin-producing strains in hospital and food equipment and, therefore, poses a great threat to human health. Two clinical isolates identified as B. cereus and B. cytotoxicus were investigated in the present work. It was shown that their calcium ion content was significantly lower than that of the reference strains. According to electron microscopy, one of the isolates SRCC 19/16 has an enlarged exosporium, and isolate SRCC 1208 shows large electron-dense inclusions of unclear nature during sporulation. We can assume that it contains a biologically active component with a cytotoxic effect and possibly plays a role in pathogenesis. Comparative chemical, biochemical, physiological, and ultrastructural analysis of spores of clinical isolates and reference strains of B. cereus was performed. The results obtained deepen our understanding of the properties of spores that contribute to the increased pathogenicity of B. cereus group species.

Sobre autores

T. Smirnova

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow

N. Polyakov

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation; Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: polyakovnb@gmail.com
Russia, 123098, Moscow; Russia, 119334, Moscow

D. Karpov

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: polyakovnb@gmail.com
Russia, 119991, Moscow

A. Solovyev

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow

N. Shevlyagina

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow

S. Andreevskaya

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow

D. Shcherbinin

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow

Z. Plieva

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow

V. Kozlova

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow

A. Pereborova

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow

I. Bogdanov

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation; “Nanopromimport” LLC, Moscow State University Science Park

Email: polyakovnb@gmail.com
Russia, 123098, Moscow; Russia, 119234, Moscow

D. Grumov

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow

M. Zubasheva

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow

S. Poddubko

State Scientific Center of the Russian Federation, Institute of Bio-Medical Problems, Russian Academy of Sciences

Email: polyakovnb@gmail.com
Russia, 123007, Moscow

A. Grechnikov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: polyakovnb@gmail.com
Russia, 119334, Moscow

M. Sukhina

Ryzhikh State Research Center of Coloproctology, Ministry of Health

Email: polyakovnb@gmail.com
Russia, 123423, Moscow

V. Zhukhovitsky

Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation; Russian Medical Academy of Continuing Professional Education (RMANPO),
Ministry of Health of the Russian Federation

Email: polyakovnb@gmail.com
Russia, 123098, Moscow; Russia, 125993, Moscow

Bibliografia

  1. Savini V. (2016) In: The Diverse Faces of Bacillus cereus. Ed. Savini V. Elsvier Acad. Press, pp. 73–84.
  2. Kuroki R., Kawakami K., Qin L., Kaji C., Watanabe K., Kimura Y., Ishiguro C., Tanimura S., Tsuchiya Y., Hamaguchi I., Sakakura M., Sakabe S., Tsuji K., Inoue M., Watanabe H. (2009) Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Intern. Med. 48(10), 791–796.
  3. Elshaghabee F.M.F., Rokana N., Gulhane R.D., Sharma C., Panwar H. (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front. Microbiol. 8, 1490.
  4. Bundy J.G., Willey T.L., Castell R.S., Ellar D.J., Brindle K.M. (2005) Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol. Lett. 242(1), 127–136.
  5. Smirnova T.A., Zubasheva M.V., Shevlyagina N.V., Nikolaenko M.A., Azizbekyan R.R. (2013) Electron microscopy of the surfaces of Bacillus spores. Microbiology. 82(6), 713–720.
  6. Stewart G.C. (2015) The exosporium layer of bacterial spores: a connection to the environment and the infected host. Microbiol. Mol. Biol. Rev. 79(4), 437–457.
  7. Ball D.A., Taylor R., Todd S.J., Redmond C., Couture-Tosi E., Sylvestre P., Moir A., Bullough P.A. (2008) Structure of the exosporium and sublayers of spores of the Bacillus cereus family revealed by electron crystallography. Mol. Microbiol. 68(4), 947–958.
  8. Smirnova T.A., Poglazova M.N., Nikolaenko M.A., Azizbekyan R.R. (2000) The adhesion characteristics of Bacillus thuringiensis. Biotechnologia. 3, 16–26.
  9. Hoa N.T., Baccigalupi L., Huxham A., Smertenko A., Van P.H., Ammendola S., Ricca E., Cutting A.S. (2000) Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 66(12), 5241–5247.
  10. Daffonchio D., Raddadi N., Merabishvili M., Cherif A., Carmagnola L., Brusetti L., Rizzi A., Chanishvili N., Visca P., Sharp R., Borin S. (2006) Strategy for identification of Bacillus cereus and Bacillus thuringiensis strains closely related to Bacillus anthracis. Appl. Environ. Microbiol. 72(2), 1295–1301.
  11. Chelliah R., Wei S., Park B.J., Kim S.H., Park D.S., Kim S.H., Hwan K.S., Oh D.H. (2017) Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR. Microb. Pathog. 111, 22–27.
  12. Olsen J.S., Skogan G., Fykse E.M., Rawlinson E.L., Tomaso H., Granum P.E., Blatny J.M. (2007) Genetic distribution of 295 Bacillus cereus group members based on adk-screening in combination with MLST (Multilocus Sequence Typing) used for validating a primer targeting a chromosomal locus in B. anthracis. J. Microbiol. Methods. 71(3), 265–274.
  13. Phillips A.P., Ezzell J.W. (1989) Identification of Bacillus anthracis by polyclonal antibodies against extracted vegetative cell antigens. J. Appl. Bacteriol. 66(5), 419–432.
  14. Clark A.E., Kaleta E.J., Arora A., Wolk D.M. (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 26(3), 547–603.
  15. Keys C.J., Dare D.J., Sutton H., Wells G., Lunt M., McKenna T., McDowall M., Shah H.N. (2004) Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterisation of bacteria implicated in human infectious diseases. Infect. Genet. Evol. 4(3), 221–242.
  16. Laue M., Fulda G. (2013) Rapid and reliable detection of bacterial endospores in environmental samples by diagnostic electron microscopy combined with X-ray microanalysis. J. Microbiol. Methods. 94(1), 13–21.
  17. Васильченко А.С., Яруллина Д.Р., Никиян А.Н., Тесля А.В. (2012). Морфофункциональные характеристики бактерий Bacillus cereus на различных этапах жизненного цикла. Вест. Оренбургского гос. университета. 10(146), 66–71.
  18. Kim K., Seo J., Wheeler K., Park C., Kim D., Park S., Kim W., Chung S.I., Leighton T. (2005) Rapid genotypic detection of Bacillus anthracis and the Bacillus cereus group by multiplex real-time PCR melting curve analysis. FEMS Immunol. Med. Microbiol. 43(2), 301–310.
  19. Abriouel H., Ben Omar N., Lucas Lopez R., Martinez Canamero M., Ortega E., Galvez A. (2007) Differentiation and characterization by molecular techniques of Bacillus cereus group isolates from poto poto and degue, two traditional cereal-based fermented foods of Burkina Faso and Republic of Congo. J. Food Prot. 70(5), 1165–1173.
  20. Hsieh Y.M., Sheu S.J., Chen Y.L., Tsen H.Y. (1999) Enterotoxigenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B. cereus strains from foods and food-borne outbreaks. J. Appl. Microbiol. 87(4), 481–490.
  21. Oliwa-Stasiak K., Molnar C.I., Arshak K., Bartoszcze M., Adley C.C. (2010) Development of a PCR assay for identification of the Bacillus cereus group species. J. Appl. Microbiol. 108(1), 266–273.
  22. Ehling-Schulz M., Svensson B., Guinebretiere M.H., Lindback T., Andersson M., Schulz A., Fricker M., Christiansson A., Granum P.E., Martlbauer E., Nguyen-The C., Salkinoja-Salonen M., Scherer S. (2005) Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology (Reading). 151(Pt 1), 183–197.
  23. Morgulis A., Coulouris G., Raytselis Y., Madden T.L., Agarwala R., Schaffer A.A. (2008) Database indexing for production MegaBLAST searches. Bioinformatics. 24(16), 1757–1764.
  24. Ito S. (1968) Formaldehyde-glutaraldehyde fixatives containing tri nitro compounds. J. Cell Biol. 39, 168A–169A.
  25. Sauer S., Freiwald A., Maier T., Kube M., Reinhardt R., Kostrzewa M., Geider K. (2008) Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One. 3(7), e2843.
  26. Liu Y., Lai Q., Goker M., Meier-Kolthoff J.P., Wang M., Sun Y., Wang L., Shao Z. (2015) Genomic insights into the taxonomic status of the Bacillus cereus group. Sci. Rep. 5, 14082.
  27. Pauker V.I., Thoma B.R., Grass G., Bleichert P., Hanczaruk M., Zoller L., Zange S. (2018) Improved discrimination of Bacillus anthracis from closely related species in the Bacillus cereus sensu lato group based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 56(5), e01900–e01917.
  28. Ha M., Jo H.J., Choi E.K., Kim Y., Kim J., Cho H.J. (2019) Reliable identification of Bacillus cereus group species using low mass biomarkers by MALDI-TOF MS. J. Microbiol. Biotechnol. 29(6), 887–896.
  29. Shu L.-J., Yang Y.-L. (2017) Bacillus classification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry – effects of culture conditions. Sci. Repts. 7(1), 15546–15546.
  30. Bourque S.N., Valero J.R., Lavoie M.C., Levesque R.C. (1995) Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. Appl. Environ. Microbiol. 61(4), 1623–1626.
  31. Guinebretiere M.H., Auger S., Galleron N., Contzen M., De Sarrau B., De Buyser M.L., Lamberet G., Fagerlund A., Granum P.E., Lereclus D., De Vos P., Nguyen-The C., Sorokin A. (2013) Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int. J. Syst. Evol. Microbiol. 63(Pt 1), 31–40.
  32. Sinnela M.T., Pawluk A.M., Jin Y.H., Kim D., Mah J.H. (2021) Effect of calcium and manganese supplementation on heat resistance of spores of Bacillus species associated with food poisoning, spoilage, and fermentation. Front. Microbiol. 12, 744953.
  33. Teplova V.V., Mikkola R., Tonshin A.A., Saris N.E., Salkinoja-Salonen M.S. (2006) The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicol. Appl. Pharmacol. 210(1–2), 39–46.
  34. Osman G., Already R., Assaeedi A., Organji S., El-Ghareeb D., Abulreesh H., Althubiani A. (2015) Bioinsecticide Bacillus thuringiensis a comprehensive review. Egyptian J. Biol. Pest Control. 25, 271–288.
  35. Yan M., Roehrl M.H., Wang J.Y. (2007) Discovery of crystalline inclusions in Bacillus licheniformis that resemble parasporal crystals of Bacillus thuringiensis. Can. J. Microbiol. 53(9), 1111–1115.
  36. Charles J.F., Nielson-LeRoux C., Delecluse A. (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu. Rev. Entomol. 41, 451–472.
  37. Park H.-W., Federici B., Sakano Y. (2006) In: Inclusion Proteins from other Insecticidal Bacteria. Eds Shively Jessup M., Steinbüchel A. Berlin: Springer, pp. 321–330.
  38. Mizuki E., Park Y.S., Saitoh H., Yamashita S., Akao T., Higuchi K., Ohba M. (2000) Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clin. Diagn. Lab. Immunol. 7(4), 625–634.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (467KB)
3.

Baixar (1MB)
4.

Baixar (788KB)
5.

Baixar (917KB)
6.

Baixar (1MB)
7.

Baixar (1MB)

Declaração de direitos autorais © Т.А. Смирнова, Н.Б. Поляков, Д.С. Карпов, А.И. Соловьев, Н.В. Шевлягина, С.Г. Андреевская, Д.Н. Щербинин, З.С. Плиева, В.А. Козлова, А.А. Переборова, И.А. Богданов, Д.А. Грумов, М.В. Зубашева, С.В. Поддубко, А.А. Гречников, М.А. Сухина, В.Г. Жуховицкий, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies