Alternative Mechanisms of Mutagenesis at mCpG Sites during Replication and Repair

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

5-Methyl-2'-deoxycytidine (mC) at CpG sites plays a key role in the epigenetic gene function regulation, cell differentiation and carcinogenesis. Despite the importance of mC for normal cell function, CpG dinucleotides are known as mutagenesis hotspots. mC is deaminated with the formation of T, causing C→T transitions. However, several recent studies demonstrated the effect of epigenetic modifications of C on the fidelity and efficiency of DNA polymerases and excision repair enzymes. This review summarizes the known data indicating the existence of mutagenesis mechanisms independent of deamination at CpG sites.

About the authors

E. S. Shilkin

Institute of Molecular Genetics, National Research Center “Kurchatov Institute”

Email: amakarova-img@yandex.ru
Russia, 123182, Moscow

D. V. Petrova

Institute of Сhemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: amakarova-img@yandex.ru
Russia, 630090, Novosibirsk; Russia, 63009, Novosibirsk

D. O. Zharkov

Institute of Сhemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: dzharkov@niboch.nsc.ru
Russia, 630090, Novosibirsk; Russia, 63009, Novosibirsk

A. V. Makarova

Institute of Molecular Genetics, National Research Center “Kurchatov Institute”

Author for correspondence.
Email: amakarova-img@yandex.ru
Russia, 123182, Moscow

References

  1. Jones P.A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492.
  2. Szulwach K.E., Jin P. (2014) Integrating DNA methylation dynamics into a framework for understanding epigenetic codes. BioEssays. 36, 107–117.
  3. Smith Z.D., Meissner A. (2013) DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220.
  4. Lyko F. (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81–92.
  5. Stevens M., Cheng J.B., Li D., Xie M., Hong C., Maire C.L., Ligon K.L., Hirst M., Marra M.A., Costello J.F., Wang T. (2013) Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods. Genome Res. 23, 1541–1553.
  6. Wu X., Zhang Y. (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534.
  7. Klungland A., Robertson A.B. (2017) Oxidized C5‑methyl cytosine bases in DNA: 5-hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine. Free Radic. Biol. Med. 107, 62–68.
  8. Branco M.R., Ficz G., Reik W. (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat. Rev. Genet. 13, 7–13.
  9. He Y.-F., Li B.-Z., Li Z., Liu P., Wang Y., Tang Q., Ding J., Jia Y., Chen Z., Li L., Sun Y., Li X., Dai Q., Song C.-X., Zhang K., He C., Xu G.-L. (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 333, 1303–1307.
  10. Weber A.R., Krawczyk C., Robertson A.B., Kuśnierczyk A., Vågbø C.B., Schuermann D., Klungland A., Schär P. (2016) Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat. Commun. 7, 10806.
  11. Kohli R.M., Zhang Y. (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 502, 472–479.
  12. Tomkova M., McClellan M., Kriaucionis S., Schuster-Boeckler B. (2016) 5-hydroxymethylcytosine marks regions with reduced mutation frequency in human DNA. Elife. 5, 1–23.
  13. Bachman M., Uribe-Lewis S., Yang X., Burgess H.E., Iurlaro M., Reik W., Murrell A., Balasubramanian S. (2015) 5-Formylcytosine can be a stable DNA modification in mammals. Nat. Chem. Biol. 11, 555–557.
  14. Ito S., Dalessio A.C., Taranova O. ., Hong K., Sowers L.C., Zhang Y. (2010) Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 466, 1129–1133.
  15. Dawlaty M.M., Breiling A., Le T., Barrasa M.I., Raddatz G., Gao Q., Powell B.E., Cheng A.W., Faull K.F., Lyko F., Jaenisch R. (2014) Loss of tet enzymes compromises proper differentiation of embryonic stem cells. Dev. Cell. 29, 102–111.
  16. Hahn M.A., Qiu R., Wu X., Li A.X., Zhang H., Wang J., Jui J., Jin S.G., Jiang Y., Pfeifer G.P., Lu Q. (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep. 3, 291–300.
  17. Spruijt C.G., Gnerlich F., Smits A.H., Pfaffeneder T., Jansen P.W.T.C., Bauer C., Münzel M., Wagner M., Müller M., Khan F., Eberl H.C., Mensinga A., Brinkman A.B., Lephikov K., Müller U., Walter J., Boelens R., van Ingen H., Leonhardt H., Carell T., Vermeulen M. (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell. 152, 1146–1159.
  18. Iurlaro M., Ficz G., Oxley D., Raiber E., Bachman M., Booth M.J., Andrews S., Balasubramanian S., Reik W. (2013) A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119.
  19. Pfeifer G.P. (2006) Mutagenesis at methylated CpG sequences. Curr. Top. Microbiol. Immunol. 301, 259–281.
  20. Waters T.R., Swann P.F. (2000) Thymine-DNA glycosylase and G to A transition mutations at CpG sites. Mutat. Res. Mutat. Res. 462, 137–147.
  21. Kawai K., Wata Y., Hara M., Tojo S., Majima T. (2002) Regulation of one-electron oxidation rate of guanine by base pairing with cytosine derivatives. J. Am. Chem. Soc. 124, 3586–3590.
  22. Hu W., Feng Z., Tang M. (2003) Preferential carcinogen−DNA adduct formation at codons 12 and 14 in the human K-ras gene and their possible mechanisms. Biochemistry. 42, 10012–10023.
  23. Denissenko M.F., Chen J.X., Tang M.-S., Pfeifer G.P. (1997) Cytosine methylation determines hot spots of DNA damage in the human P53 gene (benzo[a]pyrene5-methylcytosine). Proc. Natl. Acad. Sci. USA. 94, 3893–3898.
  24. Lee D.H., Pfeifer G.P. (2003) Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. J. Biol. Chem. 278, 10314–10321.
  25. Rochette P.J., Lacoste S., Therrien J.P., Bastien N., Brash D.E., Drouin R. (2009) Influence of cytosine methylation on ultraviolet-induced cyclobutane pyrimidine dimer formation in genomic DNA. Mutat. Res. – Fundam. Mol. Mech. Mutagen. 665, 7–13.
  26. Shen J.-C., Creighton S., Jones P.A., Goodman M.F. (1992) A comparison of the fidelity of copying 5-methylcytosine and cytosine at a difined DNA template site. Nucl. Acids Res. 20, 5119–5125.
  27. Shinbrot E., Henninger E.E., Weinhold N., Covington K.R., Göksenin A.Y., Schultz N., Chao H., Doddapaneni H., Muzny D.M., Gibbs R.A., Sander C., Pursell Z.F., Wheeler D.A. (2014) Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Res. 24, 1740–1750.
  28. Shlien A., Campbell B.B., de Borja R., Alexandrov L.B., Merico D., Wedge D., Van Loo P., Tarpey P.S., Coupland P., Behjati S., Pollett A., Lipman T., Heidari A., Deshmukh S., Avitzur N., Meier B., Gerstung M., Hong Y., Merino D.M., Ramakrishna M., Remke M., Arnold R., Panigrahi G.B., Thakkar N.P., Hodel K.P., Henninger E.E., Göksenin A.Y., Bakry D., Charames G.S., Druker H., Lerner-Ellis J., Mistry M., Dvir R., Grant R., Elhasid R., Farah R., Taylor G.P., Nathan P.C., Alexander S., Ben-Shachar S., Ling S.C., Gallinger S., Constantini S., Dirks P., Huang A., Scherer S.W., Grundy R.G., Durno C., Aronson M., Gartner A., Meyn M.S., Taylor M.D., Pursell Z.F., Pearson C.E., Malkin D., Futreal P.A., Stratton M.R., Bouffet E., Hawkins C., Campbell P.J., Tabori U., Biallelic Mismatch Repair Deficiency Consortium (2015) Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47, 257–262.
  29. Nebot-Bral L., Brandao D., Verlingue L., Rouleau E., Caron O., Despras E., El-Dakdouki Y., Champiat S., Aoufouchi S., Leary A., Marabelle A., Malka D., Chaput N., Kannouche P.L. (2017) Hypermutated tumours in the era of immunotherapy: the paradigm of personalised medicine. Eur. J. Cancer. 84, 290–303.
  30. Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A.J.R., Behjati S., Biankin A. V., Bignell G.R., Bolli N., Borg A., Børresen-Dale A.-L., Boyault S., Burkhardt B., Butler A.P., Caldas C., Davies H.R., Desmedt C., Eils R., Eyfjörd J.E., Foekens J.A., Greaves M., Hosoda F., Hutter B., Ilicic T., Imbeaud S., Imielinski M., Jäger N., Jones D.T.W., Jones D., Knappskog S., Kool M., Lakhani S.R., López-Otín C., Martin S., Munshi N.C., Nakamura H., Northcott P.A., Pajic M., Papaemmanuil E., Paradiso A., Pearson J.V., Puente X.S., Raine K., Ramakrishna M., Richardson A.L., Richter J., Rosenstiel P., Schlesner M., Schumacher T.N., Span P.N., Teague J.W., Totoki Y., Tutt A.N.J., Valdés-Mas R., van Buuren M.M., van ’t Veer L., Vincent-Salomon A., Waddell N., Yates L.R., Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium, ICGC PedBrain, Zucman-Rossi J., Futreal P.A., McDermott U., Lichter P., Meyerson M., Gri-mmond S.M., Siebert R., Campo E., Shibata T., Pfister S.M., Campbell P.J., Stratton M.R. (2013) Signatures of mutational processes in human cancer. Nature. 500, 415–421.
  31. Alexandrov L.B., Kim J., Haradhvala N.J., Huang M.N., Tian Ng A.W., Wu Y., Boot A., Covington K.R., Gordenin D.A., Bergstrom E.N., Islam S.M.A., Lopez-Bigas N., Klimczak L.J., McPherson J.R., Morganella S., Sabarinathan R., Wheeler D.A., Mustonen V., Getz G., Rozen S.G., Stratton M.R. (2020) The repertoire of mutational signatures in human cancer. Nature. 578, 94–101.
  32. Mertz T.M., Baranovskiy A.G., Wang J., Tahirov T.H., Shcherbakova P.V. (2017) Nucleotide selectivity defect and mutator phenotype conferred by a colon cancer-associated DNA polymerase δ mutation in human cells. Oncogene. 36, 4427–4433.
  33. Barbari S.R., Shcherbakova P.V. (2017) Replicative DNA polymerase defects in human cancers: consequences, mechanisms, and implications for therapy. DNA Repair (Amst.). 56, 16–25.
  34. Rayner E., Van Gool I.C., Palles C., Kearsey S.E., Bosse T., Tomlinson I., Church D.N. (2016) A panoply of errors: polymerase proofreading domain mutations in cancer. Nat. Rev. Cancer. 16, 71–81.
  35. Tomkova M., McClellan M., Kriaucionis S., Schuster-Böckler B. (2018) DNA replication and associated repair pathways are involved in the mutagenesis of methylated cytosine. DNA Repair (Amst.). 62, 1–7.
  36. Poulos R.C., Olivier J., Wong J.W.H. (2017) The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucl. Acids Res. 45, 7786–7795.
  37. Tomkova M., Tomek J., Kriaucionis S., Schuster-Böckler B. (2018) Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biol. 19, 1–12.
  38. Supek F., Lehner B. (2015) Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature. 521, 81–84.
  39. Huber C., von Watzdorf J., Marx A. (2016) 5-methylcytosine-sensitive variants of Thermococcus kodakaraensis DNA polymerase. Nucl. Acids Res. 44, 9881–9890.
  40. von Watzdorf J., Leitner K., Marx A. (2016) Modified nucleotides for discrimination between cytosine and the epigenetic marker 5-methylcytosine. Angew. Chemie Int. Ed. 55, 3229–3232.
  41. Aschenbrenner J., Drum M., Topal H., Wieland M., Marx A. (2014) Direct sensing of 5-methylcytosine by polymerase chain reaction. Angew. Chemie Int. Ed. 53, 8154–8158.
  42. Rausch C., Zhang P., Casas-Delucchi C.S., Daiß J.L., Engel C., Coster G., Hastert F.D., Weber P., Cardoso M.C. (2021) Cytosine base modifications regulate DNA duplex stability and metabolism. Nucl. Acids Res. 49, 12870–12894.
  43. Lebedev Y., Akopyants N., Azhikina T., Shevchenko Y., Potapov V., Stecenko D., Berg D., Sverdlov E. (1996) Oligonucleotides containing 2-aminoadenine and 5‑methylcytosine are more effective as primers for PCR amplification than their nonmodified counterparts. Genet. Anal. Biomol. Eng. 13, 15–21.
  44. Rodríguez López C.M., Lloyd A.J., Leonard K., Wilkinson M.J. (2012) Differential effect of three base modifications on DNA thermostability revealed by high resolution melting. Anal. Chem. 84, 7336–7342.
  45. Shibutani T., Ito S., Toda M., Kanao R., Collins L.B., Shibata M., Urabe M., Koseki H., Masuda Y., Swenberg J.A., Masutani C., Hanaoka F., Iwai S., Kuraoka I. (2015) Guanine-5-carboxylcytosine base pairs mimic mismatches during DNA replication. Sci. Rep. 4, 5220.
  46. Lee J.Y., Park J.W. (2022) Modified cytosines versus cytosine in a DNA polymerase: retrieving thermodynamic and kinetic constants at the single molecule level. Analyst. 147, 341–348.
  47. Flusberg B.A., Webster D.R., Lee J.H., Travers K.J., Olivares E.C., Clark T.A., Korlach J., Turner S.W. (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods. 7, 461–465.
  48. Howard M.J., Foley K.G., Shock D.D., Batra V.K., Wilson S.H. (2019) Molecular basis for the faithful replication of 5-methylcytosine and its oxidized forms by DNA polymerase β. J. Biol. Chem. 294, 7194–7201.
  49. Шилкин Е.С., Петрова Д.В., Полтораченко В.А., Болдинова Е.О., Жарков Д.О., Макарова А.В. (2021) Матричные свойства 5-метил-2'-дезоксицитидина и 5-гидроксиметил-2'-дезоксицитидина в реакциях с транслезионными и репаративными ДНК-полимеразами человека. Молекуляр. биология. 55, 305–311.
  50. Karino N. (2001) Synthesis and properties of oligonucleotides containing 5-formyl-2'-deoxycytidine: in vitro DNA polymerase reactions on DNA templates containing 5-formyl-2'-deoxycytidine. Nucl. Acids Res. 29, 2456–2463.
  51. Münzel M., Lischke U., Stathis D., Pfaffeneder T., Gnerlich F.A., Deiml C.A., Koch S.C., Karaghiosoff K., Carell T. (2011) Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chem. – A Eur. J. 17, 13782–13788.
  52. Song Q., Sherrer S.M., Suo Z., Taylor J.-S. (2012) Preparation of site-specific T=mCG cis-syn cyclobutane dimer-containing template and its error-free bypass by yeast and human polymerase η. J. Biol. Chem. 287, 8021–8028.
  53. Wanrooij S., Falkenberg M. (2010) The human mitochondrial replication fork in health and disease. Biochim. Biophys. Acta – Bioenerg. 1797, 1378–1388.
  54. Shock L.S., Thakkar P.V., Peterson E.J., Moran R.G., Taylor S.M. (2011) DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc. Natl. Acad. Sci. USA. 108, 3630–3635.
  55. Matsuda S., Yasukawa T., Sakaguchi Y., Ichiyanagi K., Unoki M., Gotoh K., Fukuda K., Sasaki H., Suzuki T., Kang D. (2018) Accurate estimation of 5-methylcytosine in mammalian mitochondrial DNA. Sci. Rep. 8, 5801.
  56. Lopes A.F.C. (2020) Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes. Clin. Epigenetics. 12, 182.
  57. Stoccoro A., Coppedè F. (2021) Mitochondrial DNA methylation and human diseases. Int. J. Mol. Sci. 22, 4594.
  58. Fang Y., Zou P. (2020) Genome-wide mapping of oxidative DNA damage via engineering of 8-oxoguanine DNA glycosylase. Biochemistry. 59, 85–89.
  59. Wang H., Wang Y. (2009) 6-Thioguanine perturbs cytosine methylation at the CpG dinucleotide site by DNA methyltransferases in vitro and acts as a DNA demethylating agent in vivo. Biochemistry. 48, 2290–2299.
  60. Kasymov R.D., Grin I.R., Endutkin A.V., Smirnov S.L., Ishchenko A.A., Saparbaev M.K., Zharkov D.O. (2013) Excision of 8-oxoguanine from methylated CpG dinucleotides by human 8-oxoguanine DNA glycosylase. FEBS Lett. 587, 3129–3134.
  61. Sassa A., Çağlayan M., Dyrkheeva N.S., Beard W.A., Wilson S.H. (2014) Base excision repair of tandem modifications in a methylated CpG dinucleotide. J. Biol. Chem. 289, 13996–14008.
  62. Lai Y., Jiang Z., Zhou J., Osemota E., Liu Y. (2016) AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair. DNA Repair (Amst.). 43, 89–97.
  63. Viel A., Bruselles A., Meccia E., Fornasarig M., Quaia M., Canzonieri V., Policicchio E., Urso E.D., Agostini M., Genuardi M., Lucci-Cordisco E., Venesio T., Martayan A., Diodoro M.G., Sanchez-Mete L., Stigliano V., Mazzei F., Grasso F., Giuliani A., Baiocchi M., Maestro R., Giannini G., Tartaglia M., Alexandrov L.B., Bignami M. (2017) A specific mutational signature associated with DNA 8-oxoguanine persistence in MUTYH-defective colorectal cancer. EBioMedicine. 20, 39–49.
  64. Ендуткин А.В., Яценко Д.Д., Жарков Д.О. (2022) Влияние метилирования ДНК на 3'→5'-экзонуклеазную активность основной апурин-апиримидиновой эндонуклеазы человека APEX1. Биохимия. 87, 3–15.
  65. Liu X., Xu B., Yang J., He L., Zhang Z., Cheng X., Yu H., Liu X., Jin T., Peng Y., Huang Y., Xia L., Wang Y., Wu J., Wu X., Liu S., Shan L., Yang X., Sun L., Liang J., Zhang Y., Shang Y. (2021) UHRF2 commissions the completion of DNA demethylation through allosteric activation by 5hmC and K33-linked ubiquitination of XRCC1. Mol. Cell. 81, 2960–2974. e7.
  66. Steinacher R., Barekati Z., Botev P., Kuśnierczyk A., Slupphaug G., Schär P. (2019) SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation. EMBO J. 38, 1–18.
  67. Fortini P., Dogliotti E. (2007) Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst.). 6, 398–409.
  68. Barreto G., Schäfer A., Marhold J., Stach D., Swaminathan S.K., Handa V., Döderlein G., Maltry N., Wu W., Lyko F., Niehrs C. (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 445, 671–675.
  69. Santos F., Peat J., Burgess H., Rada C., Reik W., Dean W. (2013) Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenetics Chromatin. 6, 39.
  70. Grin I., Ishchenko A.A. (2016) An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation. Nucl. Acids Res. 44, 3713–3727.
  71. Wang D., Wu W., Callen E., Pavani R., Zolnerowich N., Kodali S., Zong D., Wong N., Noriega S., Nathan W.J., Matos-Rodrigues G., Chari R., Kruhlak M.J., Livak F., Ward M., Caldecott K., Di Stefano B., Nussenzweig A. (2022) Active DNA demethylation promotes cell fate specification and the DNA damage response. Science. 378, 983–989.
  72. Petta T.B., Nakajima S., Zlatanou A., Despras E., Couve-Privat S., Ishchenko A., Sarasin A., Yasui A., Kannouche P. (2008) Human DNA polymerase iota protects cells against oxidative stress. EMBO J. 27, 2883–2895.
  73. Beard W.A., Wilson S.H. (2019) DNA polymerase beta and other gap-filling enzymes in mammalian base excision repair. Enzymes. 45, 1–26.
  74. Markkanen E. (2017) Not breathing is not an option: how to deal with oxidative DNA damage. DNA Repair (Amst.). 59, 82–105.
  75. Freudenthal B.D., Beard W.A., Perera L., Shock D.D., Kim T., Schlick T., Wilson S.H. (2015) Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature. 517, 635–639.
  76. Çağlayan M., Wilson S.H. (2017) Role of DNA polymerase β oxidized nucleotide insertion in DNA ligation failure. J. Radiat. Res. 58, 603–607.
  77. Çağlayan M., Horton J.K., Dai D.-P., Stefanick D.F., Wilson S.H. (2017) Oxidized nucleotide insertion by pol β confounds ligation during base excision repair. Nat. Commun. 8, 14045.
  78. Çağlayan M. (2020) The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates. Nucl. Acids Res. 48, 3708–3721.
  79. Çağlayan M. (2020) Pol β gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications. DNA Repair (Amst). 95, 102945.
  80. Vaisman A., Woodgate R. (2017) Translesion DNA polymerases in eukaryotes: what makes them tick? Crit. Rev. Biochem. Mol. Biol. 52, 274–303.
  81. Mitchell D.L. (2007) Effects of cytosine methylation on pyrimidine dimer formation in DNA. Photochem. Photobiol. 71, 162.
  82. Cannistraro V.J., Taylor J.-S. (2009) Acceleration of 5‑methylcytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T mutation hotspots. J. Mol. Biol. 392, 1145–1157.
  83. Brash D.E. (2015) UV signature mutations. Photochem. Photobiol. 91, 15–26.
  84. Masutani C., Kusumoto R., Iwai S., Hanaoka F. (2000) Mechanisms of accurate translesion synthesis by human DNA polymerase h. EMBO J. 19, 3100–3109.
  85. Ikehata H., Chang Y., Yokoi M., Yamamoto M., Hanaoka F. (2014) Remarkable induction of UV-signature mutations at the 3'-cytosine of dipyrimidine sites except at 5'-TCG-3' in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice. DNA Repair (Amst.). 22, 112–122.
  86. Kim S.I., Jin S.G., Pfeifer G.P. (2013) Formation of cyclobutane pyrimidine dimers at dipyrimidines containing 5-hydroxymethylcytosine. Photochem. Photobiol. Sci. 12, 1409–1415.
  87. Song Q., Cannistraro V.J., Taylor J.S. (2011) Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate. J. Biol. Chem. 286, 6329–6335.
  88. Cannistraro V.J., Pondugula S., Song Q., Taylor J. (2015) Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo. J. Biol. Chem. 290, 26597–26609.
  89. van Loon B., Markkanen E., Hübscher U. (2010) Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst.). 9, 604–616.
  90. Jiang Z., Lai Y., Beaver J.M., Tsegay P.S., Zhao M., Horton J.K., Zamora M., Rein H.L., Miralles F., Shaver M., Hutcheson J.D., Agoulnik I., Wilson S.H., Liu Y. (2020) Oxidative DNA damage modulates DNA methylation pattern in human breast cancer 1 (BRCA1) gene via the crosstalk between DNA polymerase β and a de novo DNA methyltransferase. Cells. 9, 225.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (81KB)
3.

Download (74KB)
4.

Download (292KB)
5.

Download (67KB)

Copyright (c) 2023 Е.С. Шилкин, Д.В. Петрова, Д.О. Жарков, А.В. Макарова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».