Efficiency of Escherichia coli and Bacillus subtilis Expression Systems for Production of Binase Mutants

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Bacillus pumilus ribonuclease (binase) exhibits cytotoxic and oncolytic properties, while at high concentrations it causes genotoxic effects. The use of mutants with reduced catalytic activity preserving the antitumor properties of the native enzyme could reduce the toxic side effects of the enzyme. Here, mutant forms of binase with Lys26Ala and His101Glu single substitutions were obtained by site-directed mutagenesis. A comparative analysis of Escherichia coli and Bacillus subtilis-based expression systems demonstrated the feasibility of using a bacilli-based heterologous system for production binase mutants. Binase mutants with reduced catalytic activity were isolated and purified with ion exchange chromatography in a homogeneous state with 25 mg/L yield. The catalytic properties of obtained mutants toward natural RNA-substrates in comparison with those for native binase were analyzed. The catalytic activity of the Lys26Ala and His101Glu mutants was 11 and 0.02%, respectively. It was found that the Lys26Ala mutant as well as the native binase exhibits selective cytotoxicity toward A549, BT-20 and HuTu 80 tumor cell lines, without causing toxic effects toward normal WI-38 cells. The mutant His101Glu did not exhibit cytotoxicity.

Sobre autores

A. Nadyrova

Institute of Fundamental Medicine and Biology, Kazan Federal University

Autor responsável pela correspondência
Email: alsu.nadyrova@yandex.ru
Russia, 420008, Kazan

A. Kosnyrev

Institute of Fundamental Medicine and Biology, Kazan Federal University

Email: alsu.nadyrova@yandex.ru
Russia, 420008, Kazan

V. Ulyanova

Institute of Fundamental Medicine and Biology, Kazan Federal University

Email: alsu.nadyrova@yandex.ru
Russia, 420008, Kazan

E. Dudkina

Institute of Fundamental Medicine and Biology, Kazan Federal University

Email: alsu.nadyrova@yandex.ru
Russia, 420008, Kazan

V. Vershinina

Institute of Fundamental Medicine and Biology, Kazan Federal University

Email: alsu.nadyrova@yandex.ru
Russia, 420008, Kazan

O. Ilinskaya

Institute of Fundamental Medicine and Biology, Kazan Federal University

Email: alsu.nadyrova@yandex.ru
Russia, 420008, Kazan

Bibliografia

  1. Ulyanova V., Nadyrova A., Dudkina E., Kuznetsova A., Ahmetgalieva A., Faizullin D., Surchenko Y., Novopashina D., Zuev Y., Kuznetsov N., Ilinskaya O. (2022) Structural and functional differences between homologous bacterial ribonucleases. Int. J. Mol. Sci. 23, 1867.
  2. Ильинская О.Н., Шах М.Р. (2014) Рибонуклеазы как противовирусные агенты. Молекуляр. биология. 48, 707–717.
  3. Makarov A.A., Ilinskaya O.N. (2003) Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett. 540, 15–20.
  4. Ardelt B., Ardelt W., Pozarowski P., Kunicki J., Shogen K., Darzynkiewicz Z. (2007) Cytostatic and cytotoxic properties of Amphinase: a novel cytotoxic ribonuclease from Rana pipiens oocytes. Cell Cycle. 6, 3097‒3102.
  5. Makarov A.A., Kolchinsky A., Ilinskaya O.N. (2008) Binase and other microbial RNases as potential anticancer agents. BioEssays. 30, 781–790.
  6. Митькевич В.А., Макаров А.А., Ильинская О.Н. (2014) Клеточные мишени противоопухолевых рибонуклеаз. Молекуляр. биология. 48, 214–222.
  7. Roiz L., Smirnoff P., Bar-Eli M., Schwartz B., Shoseyov O. (2006) ACTIBIND, an actin-binding fungal T2-RNase with antiangiogenic and anticarcinogenic characteristics. Cancer. 106, 2295–2308.
  8. Leland P.A., Schultz L.W., Kim B.M., Raines R.T. (1998) Ribonuclease A variants with potent cytotoxic activity. Proc. Natl. Acad. Sci. USA. 95, 10407–10412.
  9. Ilinskaya O.N., Vamvakas S. (1997) Nephrotoxic effects of bacterial ribonucleases in the isolated perfused rat kidney. Toxicology. 120, 55–63.
  10. Yakovlev G.I., Moiseyev G.P., Struminskaya N.K., Borzykh O.A., Kipenskaya L.V., Znamenskaya L.V., Leschinskaya I.B., Chernokalskaya E.B., Hartley R.W. (1994) Mutational analysis of the active site of RNase of Bacillus intermedius (BINASE). FEBS Lett. 354, 305–306.
  11. Rosano, G.L., Ceccarelli E.A. (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172.
  12. Yoon S.H., Kim S.K., Kim J.F. (2010) Secretory production of recombinant proteins in Escherichia coli. R-ecent Pat. Biotechnol. 4, 23–29.
  13. Pohl S., Bhavsar G., Hulme J., Bloor A.E., Misirli G., Leckenby M.W., Radford D.S., Smith W., Wipat A., Williamson E.D., Harwood C.R., Cranenburgh R.M. (2013) Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins. Proteomics. 13, 3298–3308.
  14. Hartley R.W., Rogerson D.L. Jr., Smeaton J.R. (1972) Production and purification of the extracellular ribonuclease of Bacillus amyloliquefaciens (barnase) and its intracellular inhibitor (barstar). II. Barstar. Prep. Biochem. 2, 243‒250.
  15. Herzberg C., Weidinger L.A.F., Dörrbecker B., Hübner S., Stülke J., Commichau F.M. (2007) SPINE: a method for the rapid detection and analysis of protein–protein interactions in vivo. Proteomics. 7, 4032–4035.
  16. Sambrook J., Russell D.W. (2001) Molecular Cloning: A Laboratory Manual Third Edition. Cold Spring Harbor: Cold Spring Harbor Lab. Press.
  17. Harwood C.R., Cutting S.M. (1991) Molecular Biological Methods for Bacillus. Chichester: Wiley.
  18. Kim R. (2011) Native agarose gel electrophoresis of multiprotein complexes. Cold Spring Harb. Protoc. 2011, 884–887.
  19. Dudkina E., Ulyanova V., Shah Mahmud R., Khodzhaeva V., Dao L., Vershinina V., Kolpakov A., Ilinskaya O. (2016) Three-step procedure for preparation of pure Bacillus altitudinis ribonuclease. FEBS Open Bio. 6, 24–32.
  20. Li W., Zhou X., Lu P. (2004) Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res. Microbiol. 155, 605–610.
  21. Ульянова В.В., Ходжаева В.С., Дудкина Е.В., Лайков А.В., Вершинина В.И., Ильинская О.Н. (2015) Препараты секретируемой РНКазы Bacillus pumilus: один фермент или два? Микробиология. 84, 425–425.
  22. Makarov A.A., Protasevich I.I., Kuznetsova N.V., Fedorov B.B., Korolev S.V., Struminskaya N.K., Bazhulina N.P., Leshchinskaya I.B., Hartley R.W., Kirpichnikov M.P., Yakovlev G.I., Esipova N.G. (1993) Comparative study of thermostability and structure of close homologues ‒ barnase and binase. J. Biomol. Struct. Dyn. 10, 1047–1065.
  23. Голубенко И., Балабан Н., Лещинская И., Волкова Т., Клейнер Г., Чепурнова Н., Афанасенко Г., Дудкин С. (1979) Рибонуклеаза Bacillus intermedius 7P. Очистка хроматографией на фосфоцеллюлозе и некоторые характеристики гомогенного фермента. Биохимия. 44(4), 640–648.
  24. Шульга А.А., Окороков А.Л., Панов К.И., Курбанов Ф.Т., Чернов Б.К., Скрябин К.Г., Кирпичников М.П. (1994) Cуперпродукция рибонуклеазы Bacillus intermedius 7Р (биназы) в E. coli. Молекуляр. биология. 28(2), 453–463.
  25. Kaur J., Kumar A., Kaur J. (2018) Strategies for optimization of heterologous protein expression in E. coli: roadblocks and reinforcements. Int. J. Biol. Macromol. 106, 803–822.
  26. Bhatwa A., Wang W., Hassan Y.I., Abraham N., Li X.Z., Zhou T. (2021) Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front. Bioeng. Biotechnol. 9, 630551.
  27. Zhang K., Su L., Wu J. (2020) Recent advances in recombinant protein production by Bacillus subtilis. Ann-u. Rev. Food Sci. Technol. 11, 295–318.
  28. Okorokov A.L., Panov K.I., Kolbanovskaya E.Y., Karpeisky M.Y., Polyakov K.M., Wilkinson A.J., Dodson G.G. (1996) Site-directed mutagenesis of the base recognition loop of ribonuclease from Bacillus intermedius (binase). FEBS Lett. 384, 143–146.
  29. Okorokov A.L., Panov K.I., Offen W.A., Mukhortov V.G., Antson A.A., Karpeisky M.Ya., Wilkinson A.J., Dodson G.G. (1997) RNA cleavage without hydrolysis. Splitting the catalytic activities of binase with Asn101 and Thr101 mutations. Protein Eng. 10, 273–278.
  30. Yoshida H. (2001) The ribonuclease T1 family. Methods Enzymol. 341, 28–41.
  31. Бачинский А.Г. (1976) Структура и помехоустойчивость генетического кода. Журнал общей биологии. 37, 163–173.
  32. Sneath P.H. (1966) Relations between chemical structure and biological activity in peptides. J. Theor. Biol. 12, 157–195.
  33. Castro J., Ribó M., Vilanova M., Benito A. (2021) Strengths and challenges of secretory ribonucleases as antitumor agents. Pharmaceutics. 13, 82.
  34. Gotte G., Menegazzi M. (2019) Biological activities of secretory RNases: focus on their oligomerization to design antitumor drugs. Front. Immunol. 10, 2626.
  35. Dudkina E.V., Ulyanova V.V., Ilinskaya O.N. (2020) Supramolecular organization as a factor of ribonuclease cytotoxicity. Acta Naturae. 12, 24–33.
  36. Ilinskaya O., Singh I., Dudkina E., Ulyanova V., Kayumov A., Barreto G. (2016) Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). Biochim. Biophys. Acta Mol. 1863, 1559–1567.
  37. Hollestelle A., Elstrodt F., Nagel J., Kallemeijn W., Schutte M. (2007) Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol. Cancer Res. 5, 195–201.
  38. Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella M., Lamba S., Martinoglio B., Veronese S., Siena S., Sartore-Bianchi A., Beccuti M., Mottolese M., Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A. (2015) The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat. Commun. 6, 7002.
  39. Chen Y. H., Lv H., Shen N., Wang X. M., Tang S., Xiong B., Ding J., Geng M., Huang, M. (2020) EPHA2 feedback activation limits the response to PDEδ inhibition in KRAS-dependent cancer cells. Acta Pharmacol. Sin. 41, 270–277.
  40. Ulyanova V., Dudkina E., Nadyrova A., Kalashnikov V., Surchenko Y., Ilinskaya O. (2020) The cytotoxicity of RNase-derived peptides. Biomolecules. 11, 16.
  41. Зеленихин П.В., Еад Мохамед И.С., Надырова А.И., Сироткина А.А., Ульянова В.В., Миронова Н.Л., Митькевич В.А., Макаров А.А., Зенкова М.А., Ильинская О.Н. (2020) Рибонуклеаза Bacillus pumilus ингибирует миграцию клеток аденокарциномы двенадцатиперстной кишки человека HuTu 80. Молекуляр. биология. 54, 146–152.
  42. Alford S.C., Pearson J.D., Carette A., Ingham R.J., Howard P.L. (2009) Alpha-sarcin catalytic activity is not required for cytotoxicity. BMC Biochem. 10, 9.
  43. Navarro S., Aleu J., Jiménez M., Boix E., Cuchillo C.M., Nogués M.V. (2008) The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell. Mol. Life Sci. 65, 324–337.
  44. Ilinskaya O., Ivanchenko O.B., Karamova N.S. (1995) Bacterial ribonuclease: mutagenic effect in microbial test-systems. Mutagenesis. 10, 165–170.
  45. Ilinskaya O.N., Karamova N.S., Ivanchenko O.B., Kipenskaya L.V. (1996) SOS-inducing ability of native and mutant microbial ribonucleases. Mutat. Res. 354, 203–209.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (586KB)
3.

Baixar (143KB)
4.

Baixar (430KB)
5.

Baixar (275KB)

Declaração de direitos autorais © А.И. Надырова, А.С. Коснырев, В.В. Ульянова, Е.В. Дудкина, В.И. Вершинина, О.Н. Ильинская, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies