Comparative Analysis of Mitochondrial Genome Mutation Spectra in Human Populations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Nucleotide sequence variability of whole mitochondrial genomes (mtDNA) was analyzed and mutation spectra were reconstructed (by L-chain of mtDNA) in four regional groups of indigenous populations representing Northeastern and Southern Siberia, Western Asia, and the Americas. The pyrimidine transitions were found to be predominant in all groups, and of these, the substitutions T→C were most frequent. The second most common in all regional groups (except Northeastern Siberia) are substitutions A→G. Of the transversions, in all the populations studied the substitutions C→A prevail. Between-regional differences in the distribution of nucleotide substitutions in mtDNA mutation spectra were not detected. However, a significant (4-fold) decrease in the number of mutations in mitochondrial gene pools was detected in the indigenous population of Northeastern Siberia compared to other regions. This may be due to the increased effect of negative selection on mtDNA in the Far North environment, which prevents the accumulation of new mutations, and gene drift, which is most pronounced in isolated and small populations of Northeastern Siberia. Because of the lack of between-regional differences in mtDNA mutation spectra, the results obtained do not allow us to confirm the hypothesis that the T→C substitution frequency appears to be a molecular marker of the level of oxidative stress in mitochondria (at least for generative mutations).

Sobre autores

B. Malyarchuk

Institute of Biological Problems of the North, Far Eastern Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: malyarchuk@ibpn.ru
Russia, 685000, Magadan

Bibliografia

  1. Brown W.M., George M., Wilson A.C. (1979) Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 76, 1967–1971.
  2. Giles R.E., Blanc H., Cann H.M., Wallace D.C. (1980) Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 77, 6715–6719. https://doi.org/10.1073/pnas.77.11.6715
  3. Soares P., Ermini L., Thomson N., Mormina M., Rito T., Rohl A., Salas A., Oppenheimer S., Macaulay V., Richards M.B. (2009) Correcting for purifying selection: an improved human mitochondrial molecular clock. Am. J. Hum. Genet. 84, 740–759. https://doi.org/10.1016/j.ajhg.2009.05.001
  4. Lipson M., Loh P.-R., Sankararaman S., Patterson N., Berger B., Reich D. (2015) Calibrating the human mutation rate via ancestral recombination density in diploid genomes. PLoS Genet. 11, e1005550. https://doi.org/10.1371/journal.pgen.1005550
  5. Jukes T.H. (1980) Silent nucleotide substitutions and the molecular evolutionary clock. Science. 210, 973–978.
  6. Малярчук Б.А. (2005) Анализ распределения нуклеотидных замен в генах митохондриальной ДНК человека. Генетика. 41, 93–99.
  7. Kivisild T., Shen P., Wall D.P., Do B., Sung R., Davis K., Passarino G., Underhill P.A., Scharfe C., Torroni A., Scozzari R., Modiano D., Coppa A., de Knijff P., Feldman M., Cavalli-Sforza L.L., Oefner P.J. (2006) The role of selection in the evolution of human mitochondrial genomes. Genetics. 172, 373–387. https://doi.org/10.1534/genetics.105.043901
  8. Pereira L., Freitas F., Fernandes V., Pereira J.B., Costa M.D., Costa S., Máximo V., Macaulay V., Rocha R., Samuels D.C. (2009) The diversity present in 5140 human mitochondrial genomes. Am. J. Hum. Genet. 84, 628–640. https://doi.org/10.1016/j.ajhg.2009.04.013
  9. Samuels D.C., Boys R.J., Henderson D.A., Chinnery P.F. (2003) A compositional segmentation of the human mitochondrial genome is related to heterogeneities in the guanine mutation rate. Nucl. Acids Res. 31, 6043–6052. https://doi.org/10.1093/nar/gkg784
  10. Mishmar D., Ruiz-Pesini E., Golik P., Macaulay V., Clark A.G., Hosseini S., Brandon M., Easley K., Chen E., Brown M.D., Sukernik R.I., Olckers A., Wallace D.C. (2003) Natural selection shaped regional mtDNA variation in humans. Proc. Natl. Acad. Sci. USA. 100, 171–176. https://doi.org/10.1073/pnas.0136972100
  11. Ruiz-Pesini E., Mishmar D., Brandon M., Procaccio V., Wallace D.C. (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science. 303, 223–226. https://doi.org/10.1126/science.1088434
  12. Ingman M., Gyllensten U. (2007) Rate variation between mitochondrial domains and adaptive evolution in humans. Hum. Mol. Genet. 16, 2281–2287. https://doi.org/10.1093/hmg/ddm180
  13. Balloux F., Lawson Handley L.-J., Jombart T., Liu H., Manica A. (2009) Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. Proc. R. Soc. B. 276, 3447–3455. https://doi.org/10.1098/rspb.2009.0752
  14. Brand M.D. (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 35, 811–820. https://doi.org/10.1016/s0531-5565(00)00135-2
  15. Leonard W.R., Snodgrass J.J., Sorensen M.V. (2005) Metabolic adaptation in indigenous Siberian populations. Annu. Rev. Anthropol. 34, 451–471 https://doi.org/10.1146/annurev.anthro.34.081804.120558
  16. Elson J.L., Turnbull D.M., Howell N. (2004) Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am. J. Hum. Genet. 74, 229–238. https://doi.org/10.1086/381505
  17. Sun C., Kong Q.-P., Zhang Y.-P. (2007) The role of climate in human mitochondrial DNA evolution: a reappraisal. Genomics. 89, 338–342. https://doi.org/10.1016/j.ygeno.2006.11.005
  18. Hoffecker J.F., Elias S.A., Scott G.R., O’Rourke D.H., Hlusko L.J., Potapova O., Pitulko V., Pavlova E., Bourgeon L., Vachula R.S. (2023) Beringia and the peopling of the Western Hemisphere. Proc. R. Soc. B. 290, 20222246. https://doi.org/10.1098/rspb.2022.2246
  19. Andrews R.M., Kubacka I., Chinnery P.F., Lightowlers R.N., Turnbull D.M., Howell N. (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147. https://doi.org/10.1038/13779
  20. Fagundes N.J.R., Tagliani-Ribeiro A., Rubicz R., Tarskaia L., Crawford M.H., Salzano F.M., Bonatto S.L. (2018) How strong was the bottleneck associated to the peopling of the Americas? New insights from multilocus sequence data. Genet. Mol. Biol. 41(suppl. 1), 206–214. https://doi.org/10.1590/1678-4685-GMB-2017-0087
  21. Mikhailova A.G., Mikhailova A.A., Ushakova K., Tretiakov E.O., Iliushchenko D., Shamansky V., Lobanova V., Kozenkov I., Efimenko B., Yurchenko A.A., Kozenkova E., Zdobnov E.M., Makeev V., Yurov V., Tanaka M., Gostimskaya I., Fleischmann Z., Annis S., Franco M., Wasko K., Denisov S., Kunz W.S., Knorre D., Mazunin I., Nikolaev S., Fellay J., Reymond A., Khrapko K., Gunbin K., Popadin K. (2022) A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand. Nucl. Acids Res. 50, 10264–10277. https://doi.org/10.1093/nar/gkac779
  22. Корниенко И.В., Малярчук Б.А. (2005) Анализ механизмов возникновения мутаций в митохондриальной ДНК человека. Молекуляр. биология. 39, 869‒877.
  23. Richter C., Park J.-W., Ames B.N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA. 85, 6465–6467.
  24. Деренко М.В., Малярчук Б.А. (2010) Молекулярная филогеография населения Северной Евразии по данным об изменчивости митохондриальной ДНК. Магадан: СВНЦ ДВО РАН, 376 с.
  25. Clemente F.J., Cardona A., Inchley C.E., Peter B.M., Jacobs G., Pagani L., Lawson D.J., Antão T., Vicente M., Mitt M., DeGiorgio M., Faltyskova Z., Xue Y., Ayub Q., Szpak M., Mägi R., Eriksson A., Manica A., Raghavan M., Rasmussen M., Rasmussen S., Willerslev E., Vidal-Puig A., Tyler-Smith C., Villems R., Nielsen R., Metspalu M., Malyarchuk B., Derenko M., Kivisild T. (2014) A selective sweep on a deleterious mutation in CPT1A in Arctic populations. Am. J. Hum. Genet. 95, 584–589. https://doi.org/10.1016/j.ajhg.2014.09.016

Declaração de direitos autorais © Б.А. Малярчук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies