Genes Associated with Increased Stress Sensitivity in Hypertensive ISIAH Rats

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

ISIAH rats with inherited stress-induced arterial hypertension are characterized by increased stress reactivity of the hypothalamic-pituitary-adrenal and sympathoadrenal systems. The aim of this work was to study the genetic basis of increased susceptibility to stress in hypertensive ISIAH rats. Sequencing of the adrenal transcriptomes of hypertensive ISIAH and normotensive WAG rats revealed 9 differentially expressed genes (DEGs) in the X chromosome locus, which was previously associated with an increase in blood pressure and plasma corticosterone concentrations under mild emotional stress, and also with increased adrenal weight in ISIAH rats. An analysis of the functions of the proteins encoded by these DEGs suggested that the Sms gene encoding spermine synthase is the most likely candidate gene in the X chromosome locus associated with an increased level of stress susceptibility in ISIAH rats.

Sobre autores

L. Fedoseeva

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: oredina@ngs.ru
Russia, 630090, Novosibirsk

S. Smolenskaya

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: oredina@ngs.ru
Russia, 630090, Novosibirsk

A. Markel

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: oredina@ngs.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

O. Redina

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: oredina@ngs.ru
Russia, 630090, Novosibirsk

Bibliografia

  1. Lin W., Wang W., Shao F. (2003) New animal model of emotional stress: behavioral, neuroendocrine and immunological consequences. Chinese Sci. Bull. 48, 1565–1568.
  2. Markel A.L., Redina O.E., Gilinsky M.A., Dymshits G.M., Kalashnikova E.V., Khvorostova Y.V., Fedoseeva L.A., Jacobson G.S. (2007) Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J. Endocrinol. 195, 439–450.
  3. Markel A.L. (1992) Development of a new strain of rats with inherited stress-induced arterial hypertension. Genet. Hypertens. 218, 405–407.
  4. Redina O.E., Smolenskaya S.E., Maslova L.N., Markel A.L. (2013) The genetic control of blood pressure and body composition in rats with stress-sensitive hypertension. Clin. Exp. Hypertens. 35, 484–495.
  5. Lee S.J., Liu J., Qi N., Guarnera R.A., Lee S.Y., Cicila G.T. (2003) Use of a panel of congenic strains to evaluate differentially expressed genes as candidate genes for blood pressure quantitative trait loci. Hypertens. Res. 26, 75–87.
  6. Hoffman P., Tabakoff B. (2005) Gene expression in animals with different acute responses to ethanol. Addict. Biol. 10, 63–69.
  7. Jacob H.J., Kwitek A.E. (2002) Rat genetics: attaching physiology and pharmacology to the genome. Nat. Rev. Genet. 3, 33–42.
  8. Markel A.L., Maslova L.N., Shishkina G.T., Bulygina V.V., Machanova N.A., Jacobson G.S. (1999) Developmental influences on blood pressure regulation in ISIAH rats. Dev. Hypertens. Phenotype: Basic Clin. Stud. 19, 493–526.
  9. Tamashiro K.L., Nguyen M.M., Ostrander M.M., Gardner S.R., Ma L.Y., Woods S.C., Sakai R.R. (2007) Social stress and recovery: implications for body weight and body composition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1864–1874.
  10. de Souza D.B., Silva D., Silva C.M.C., Sampaio F.J.B., Costa W.S., Cortez C.M. (2011) Effects of immobilization stress on kidneys of Wistar male rats: a morphometrical and stereological analysis. Kidney Blood Press. Res. 34, 424–429.
  11. Antonov Y.V., Alexandrovich Y.V., Redina O.E., Gilinsky M.A., Markel A.L. (2016) Stress and hypertensive disease: adrenals as a link. Experimental study on hypertensive ISIAH rat strain. Clin. Exp. Hypertens. 38, 415–423.
  12. De Champlain J., Van Ameringen M.R. (1972) Regulation of blood pressure by sympathetic nerve fibers and adrenal medulla in normotensive and hypertensive rats. Circ. Res. 31, 617–628.
  13. Lewicka S., Nowicki M., Vecsei P. (1998) Effect of sodium restriction on urinary excretion of cortisol and its metabolites in humans. Steroids. 63, 401–405.
  14. Skelton F.R., Bernardis L.L. (1966) Effect of age, sex, hypophysectomy and gonadectomy on plasma corticosterone levels and adrenal weights following the administration of ACTH and stress. Experientia. 22, 551–552.
  15. Tizabi Y., Aguilera G. (1992) Desensitization of the hypothalamic-pituitary-adrenal axis following prolonged administration of corticotropin-releasing hormone or vasopressin. Neuroendocrinology. 56, 611–618.
  16. Willenberg H.S., Bornstein S.R., Dumser T., Ehrhart-Bornstein M., Barocka A., Chrousos G.P., Scherbaum W.A. (1998) Morphological changes in adrenals from victims of suicide in relation to altered apoptosis. Endocr. Res. 24, 963–967.
  17. Tran P.V., Georgieff M.K., Engeland W.C. (2010) Sodium depletion increases sympathetic neurite outgrowth and expression of a novel TMEM35 gene-derived protein (TUF1) in the rat adrenal zona glomerulosa. Endocrinology. 151, 4852–4860.
  18. Fedoseeva L.A., Klimov L.O., Ershov N.I., Alexandrovich Y.V., Efimov V.M., Markel A.L., Redina O.E. (2016) Molecular determinants of the adrenal gland functioning related to stress-sensitive hypertension in ISIAH rats. BMC Genomics. 17(Suppl 14), 989.
  19. Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36.
  20. Trapnell C., Hendrickson D.G., Sauvageau M., Goff L., Rinn J.L., Pachter L. (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53.
  21. Ершов Н.И., Маркель А.Л., Редина О.Е. (2017) Однонуклеотидные полиморфизмы, специфичные для гипертензивных крыс линии НИСАГ. Биохимия. 82, 344–356.
  22. Friese R.S., Mahboubi P., Mahapatra N.R., Mahata S.K., Schork N.J., Schmid-Schonbein G.W., O’Connor D.T. (2005) Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension. Am. J. Hypertens. 18, 633–652.
  23. Romero D.G., Plonczynski M.W., Welsh B.L., Gomez-Sanchez C.E., Zhou M.Y., Gomez-Sanchez E.P. (2007) Gene expression profile in rat adrenal zona glomerulosa cells stimulated with aldosterone secretagogues. Physiol. Genomics. 32, 117–127.
  24. Liu X., Serova L., Kvetnansky R., Sabban E.L. (2008) Identifying the stress transcriptome in the adrenal medulla following acute and repeated immobilization. Ann. N.Y. Acad. Sci. 1148, 1–28.
  25. Pegg A.E., Michael A.J. (2010) Spermine synthase. Cell. Mol. Life Sci. 67, 113–121.
  26. Løvaas E. (1995) Hypothesis: spermine may be an important epidermal antioxidant. Med. Hypotheses. 45, 59–67.
  27. Pittner R.A., Bracken P., Fears R., Brindley D.N. (1986) Spermine antagonises the effects of dexamethasone, glucagon and cyclic AMP in increasing the activity of phosphatidate phosphohydrolase in isolated rat hepatocytes. FEBS Lett. 207, 42–46.
  28. Hegardt C., Andersson G., Oredsson S.M. (2001) Different roles of spermine in glucocorticoid- and Fas-induced apoptosis. Exp. Cell Res. 266, 333–341.
  29. Rhee H.J., Kim E.J., Lee J.K. (2007) Physiological polyamines: simple primordial stress molecules. J. Cell. Mol. Med. 11, 685–703.
  30. Fleidervish I.A., Libman L., Katz E., Gutnick M.J. (2008) Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na+ channels. Proc. Natl. Acad. Sci. USA. 105, 18994–18999.
  31. Kurata H.T., Diraviyam K., Marton L.J., Nichols C.G. (2008) Blocker protection by short spermine analogs: refined mapping of the spermine binding site in a Kir channel. Biophys. J. 95, 3827–3839.
  32. Pegg A.E. (2009) Mammalian polyamine metabolism and function. IUBMB Life. 61, 880–894.
  33. Vaziri N.D., Wang X.Q., Oveisi F., Rad B. (2000) Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension. 36, 142–146.
  34. Lou Y., Zhang F., Luo Y., Wang L., Huang S., Jin F. (2016) Serum and glucocorticoid regulated kinase 1 in sodium homeostasis. Int. J. Mol. Sci. 17, pii: E1307.
  35. Schwartz C.E., Peron A., Kutler M.J. (1993–2022) Snyder-Robinson syndrome. In: GeneReviews.® Eds Adam M.P., Everman D.B., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A. [Internet]. Seattle (WA): Univ. Washington, Seattle.
  36. Chiodini I., Scillitani A. (2008) Role of cortisol hypersecretion in the pathogenesis of osteoporosis. Recenti Prog. Med. 99, 309–313.
  37. Cano-Lopez I., Gonzalez-Bono E. (2019) Cortisol levels and seizures in adults with epilepsy: a systematic review. Neurosci. Biobehav. Rev. 103, 216–229.
  38. Li C., Brazill J.M., Liu S., Bello C., Zhu Y., Morimoto M., Cascio L., Pauly R., Diaz-Perez Z., Malicdan M.C.V., Wang H., Boccuto L., Schwartz C.E., Gahl W.A., Boerkoel C.F., Zhai R.G. (2017) Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder-Robinson syndrome. Nat. Commun. 8, 1257.
  39. Huynh K. (2017) Basic research: cardioprotective benefits of dietary spermidine. Nat. Rev. Cardiol. 14, 65.
  40. Hermansson M., Hänninen S., Hokynar K., Somerharju P. (2016) The PNPLA-family phospholipases involved in glycerophospholipid homeostasis of HeLa cells. Biochim. Biophys. Acta. 1861, 1058–1065.
  41. Gao J.G., Shih A., Gruber R., Schmuth M., Simon M. (2009) GS2 as a retinol transacylase and as a catalytic dyad independent regulator of retinyl ester accretion. Mol. Genet. Metab. 96, 253–260.
  42. O'Byrne S.M., Blaner W.S. (2013) Retinol and retinyl esters: biochemistry and physiology. J. Lipid Res. 54, 1731–1743.
  43. Georgieff M.K., Radmer W.J., Sowell A.L., Yeager P.R., Blaner W.S., Gunter E.W., Johnson D.E. (1991) The effect of glucocorticosteroids on serum, liver, and lung vitamin A and retinyl ester concentrations. J. Pediatr. Gastroenterol. Nutr. 13, 376–382.
  44. Sorg O., Tran C., Carraux P., Didierjean L., Saurat J. (1999) Retinol and retinyl ester epidermal pools are not identically sensitive to UVB irradiation and anti-oxidant protective effect. Dermatology. 199, 302–307.
  45. Takase S., Goda T., Yokogoshi H., Hoshi T. (1992) Changes in vitamin A status following prolonged immobilization (simulated weightlessness). Life Sci. 51, 1459–1466.
  46. Nakano K., Morita A. (1982) Redistribution of vitamin A in tissues of rats with imposed chronic confinement stress. Br. J. Nutr. 47, 645–652.
  47. Jiang Z.M., Wu X.J., Liu Y., Du X.H., Shen S.J., Xu L.Y., Sun W.X. (2013) Changes of gene expression profiles across different phases of vascular calcification in rats. Genet. Mol. Res. 12, 5945–5957.
  48. Gupta V., Galante A., Soteropoulos P., Guo S., Wagner B.J. (2005) Global gene profiling reveals novel glucocorticoid induced changes in gene expression of human lens epithelial cells. Mol. Vis. 11, 1018–1040.
  49. Korkut S., Baştuğ O., Raygada M., Hatipoğlu N., Kurtoğlu S., Kendirci M., Lyssikatos C., Stratakis C.A. (2016) Complex glycerol kinase deficiency and adrenocortical insufficiency in two neonates. J. Clin. Res. Pediatr. Endocrinol. 8, 468–471.
  50. Seltzer W.K., Firminger H., Klein J., Pike A., Fennessey P., McCabe E.R. (1985) Adrenal dysfunction in glycerol kinase deficiency. Biochem. Med. 33, 189–199.
  51. Huq A.H., Lovell R.S., Ou C.N., Beaudet A.L., Craigen W.J. (1997) X-linked glycerol kinase deficiency in the mouse leads to growth retardation, altered fat metabolism, autonomous glucocorticoid secretion and neonatal death. Hum. Mol. Genet. 6, 1803–1809.
  52. Festuccia W.T., Guerra-Sá R., Kawashita N.H., Garófalo M.A., Evangelista E.A., Rodrigues V., Kettelhut I.C., Migliorini R.H. (2003) Expression of glycerokinase in brown adipose tissue is stimulated by the sympathetic nervous system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1536–1541.
  53. Van Maldergem L., Hou Q., Kalscheuer V.M., Rio M., Doco-Fenzy M., Medeira A., de Brouwer A.P., Cabrol C., Haas S.A., Cacciagli P., Moutton S., Landais E., Motte J., Colleaux L., Bonnet C., Villard L., Dupont J., Man H.Y. (2013) Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth. Hum. Mol. Genet. 22, 3306–3314.
  54. de Lange I.M., Helbig K.L., Weckhuysen S., Møller R.S., Velinov M., Dolzhanskaya N., Marsh E., Helbig I., Devinsky O., Tang S., Mefford H.C., Myers C.T., van Paesschen W., Striano P., van Gassen K., van Kempen M., de Kovel C.G., Piard J., Minassian B.A., Nezarati M.M., Pessoa A., Jacquette A., Maher B., Balestrini S., Sisodiya S., Warde M.T., De St Martin A., Chelly J., EuroEPINOMICS-RES MAE working group, van 't Slot R., Van Maldergem L., Brilstra E.H., Koeleman B.P. (2016) De novo mutations of KIAA2022 in females cause intellectual disability and intractable epilepsy. J. Med. Genet. 53, 850–858.
  55. Kuroda Y., Ohashi I., Naruto T., Ida K., Enomoto Y., Saito T., Nagai J., Wada T., Kurosawa K. (2015) Delineation of the KIAA2022 mutation phenotype: two patients with X-linked intellectual disability and distinctive features. Am. J. Med. Genet. A. 167, 1349–1353.
  56. Salas I.H., Callaerts-Vegh Z., Arranz A.M., Guix F.X., D’Hooge R., Esteban J.A., De Strooper B., Dotti C.G. (2017) Tetraspanin 6: a novel regulator of hippocampal synaptic transmission and long term plasticity. PLoS One. 12, e0171968.
  57. Zhong L., Cherry T., Bies C.E., Florence M.A., Gerges N.Z. (2009) Neurogranin enhances synaptic strength through its interaction with calmodulin. EMBO J. 28, 3027–3039.
  58. Stein V., House D.R., Bredt D.S., Nicoll R.A. (2003) Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J. Neurosci. 23, 5503–5506.
  59. Matsuda A., Suzuki Y., Honda G., Muramatsu S., Matsuzaki O., Nagano Y., Doi T., Shimotohno K., Harada T., Nishida E., Hayashi H., Sugano S. (2003) Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene. 22, 3307–3318.
  60. Wang Y., Tong X., Omoregie E.S., Liu W., Meng S., Ye X. (2012) Tetraspanin 6 (TSPAN6) negatively regulates retinoic acid-inducible gene I-like receptor-mediated immune signaling in a ubiquitination-dependent manner. J. Biol. Chem. 287, 34626–34634.
  61. Kennedy B.C., Dimova J.G., Dakoji S., Yuan L.L., Gewirtz J.C., Tran P.V. (2016). Deletion of novel protein TMEM35 alters stress-related functions and impairs long-term memory in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R166–178.
  62. Дубинина А.Д., Антонов Е.В., Федосеева Л.А., Пивоварова Е.Н., Маркель А.Л., Иванова Л.Н. (2016) Ренин-ангиотензин-альдостероновая система у крыс линии НИСАГ (ISIAH) со стресс-индуцированной артериальной гипертензией Вавиловский журн. генетики и селекции. 20, 954–958.
  63. Sato S., Hasegawa M., Fujimoto M., Tedder T.F., Takehara K. (2000) Quantitative genetic variation in CD19 expression correlates with autoimmunity. J. Immunol. 165, 6635–6643).
  64. López-Doménech G., Serrat R., Mirra S., D’Aniello S., Somorjai I., Abad A., Vitureira N., García-Arumí E., Alonso M.T., Rodriguez-Prados M., Burgaya F., Andreu A.L., García-Sancho J., Trullas R., Garcia-Fernàndez J., Soriano E. (2012) The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2. Nat. Commun. 3, 814.
  65. Althubiti M., Lezina L., Carrera S., Jukes-Jones R., Giblett S.M., Antonov A., Barlev N., Saldanha G.S., Pritchard C.A., Cain K., Macip S. (2014) Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 5, e1528.
  66. Ong W.Y., Ng M.P., Loke S.Y., Jin S., Wu Y.J., Tanaka K., Wong P.T. (2013) Comprehensive gene expression profiling reveals synergistic functional networks in cerebral vessels after hypertension or hypercholesterolemia. PLoS One. 8, e68335.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (103KB)
3.

Baixar (35KB)

Declaração de direitos autorais © Л.А. Федосеева, С.Э. Смоленская, А.Л. Маркель, О.Е. Редина, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies