Influence of Poly(ADP-ribose)polymerase 1 Level on the Status of Base Excision Repair in Human Cells

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The base excision repair (BER) system is aimed at repair of the largest group of DNA lesions, namely of damaged bases. The main steps in BER are: recognition and removal of the aberrant base, cutting the DNA sugar-phosphate backbone, gap processing (including dNMP insertion), and DNA ligation. The precise functioning of BER depends on the regulation of each step of the process by regulatory/accessory proteins, the most important of which is poly(ADP-ribose)polymerase 1 (PARP1). PARP1 plays an important role in various processes of DNA repair, maintenance of genome integrity, and regulation of mRNA stability and decay. In this regard, PARP1 can affect BER both at the level of proteins involved in the process and at the level of expression of the mRNAs encoding them. There are no systematic data on the effect of various amounts of PARP1 on the activity of key BER proteins and the levels of mRNAs encoding them in human cells. In our work, using whole-cell extracts and RNA preparations obtained from the parental HEK293T cell line and its derivative HEK293T/P1-KD cell line with reduced PARP1 expression (shPARP1-expressing cells, PARP1 knockdown), we assessed the levels of mRNA encoding BER proteins: PARP1, PARP2, uracil DNA glycosylase (UNG2), AP endonuclease 1 (APE1), DNA polymerase β (POLβ), DNA ligase III (LIG3), and XRCC1. In parallel, the catalytic activity of these enzymes was evaluated. No significant effect of the PARP1 amount of on the mRNA levels of UNG2, APE1, POLβ, LIG3, and XRCC1 was found. At the same time, in HEK293T/P1-KD cells, the amount of PARP2 mRNA was reduced by 2 times. The activities of these enzymes in whole-cell extracts of HEK293T and HEK293T/P1-KD cells also did not differ significantly. Under the conditions of poly(ADP-ribose) synthesis, the efficiency of the reactions catalyzed by UNG2, APE1, POLβ, and LIG3 also did not change significantly. In addition, it was shown that a reduced amount of PARP1 in the extract of HEK293T/P1-KD cells does not cause fundamental changes in the nature of DNA PARylation compared to the extract of the parental HEK293T cell line.

Sobre autores

E. Ilina

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: svetakh@niboch.nsc.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

A. Kochetkova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: svetakh@niboch.nsc.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

E. Belousova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: svetakh@niboch.nsc.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

M. Kutuzov

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: svetakh@niboch.nsc.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

O. Lavrik

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: svetakh@niboch.nsc.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

S. Khodyreva

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: svetakh@niboch.nsc.ru
Russia, 630090, Novosibirsk

Bibliografia

  1. Hegde M.L., Hazra T.K., Mitra S. (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 18, 27–47.
  2. Almeida K.H., Sobol R.W. (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair. 6, 695–711.
  3. Schärer O.D. (2003) Chemistry and biology of DNA repair. Angew. Chem. Int. Ed. Engl. 42, 2946–2974.
  4. Frosina G., Fortini P., Rossi O., Carrozzino F., Raspaglio G., Cox L.S., Lane D.P., Abbondandolo A., Dogliotti E. (1996) Two pathways for base excision repair in mammalian cells. J. Biol. Chem. 271, 9573–9578.
  5. Klungland A., Lindahl T. (1997) Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16, 3341–3348.
  6. Ходырева С.Н., Лаврик О.И. (2016) Поли(ADP-рибоза)полимераза 1 – ключевой регулятор репарации ДНК. Молекуляр. биология. 50, 655–673.
  7. Langelier M.F., Eisemann T., Riccio A.A., Pascal J.M. (2018) PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr. Opin. Struct. Biol. 53, 187−198.
  8. Alemasova E.E., Lavrik O.I. (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucl. Acids Res. 47, 3811–3827.
  9. Hanzlikova H., Gittens W., Krejcikova K., Zeng Z., Caldecott K.W. (2017) Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucl. Acids Res. 45, 2546–2557.
  10. De Vos M., Schreiber V., Dantzer F. (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem. Pharmacol. 84, 137–146.
  11. Mortusewicz O., Amé J.-C., Schreiber V., Leonhardt H. (2007). Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucl. Acids Res. 35, 7665–7675.
  12. Sukhanova M.V. Khodyreva S.N., Lebedeva N.A., Prasad R., Wilson SH., Lavrik O.I. (2005) Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucl. Acids Res. 33, 1222–1229.
  13. Khodyreva S.N., Prasad R., Ilina E.S., Sukhanova M.V., Kutuzov M.M., Liu Y., Hou E.W., Wilson S.H., Lavrik O.I. (2010) Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). Proc. Natl. Acad. Sci. USA. 107, 22090–22095.
  14. Kutuzov M.M., Khodyreva S.N., Ilina E.S., Sukhanova M.V., Amé J.C., Lavrik O.I. (2015) Interaction of PARP-2 with AP site containing DNA. Biochimie. 112, 10–19.
  15. Sukhanova M.V., Hamon L., Kutuzov M.M., Joshi V., Abrakhi S., Dobra I., Curmi P.A., Pastre D., Lavrik O.I. (2019) A single-molecule atomic force microscopy study of PARP1 and PARP2 recognition of base excision repair DNA intermediates. J. Mol. Biol. 431, 2655–2673.
  16. Kurgina T.A., Anarbaev R.O., Sukhanova M.V., Lavrik O.I. (2018). A rapid fluorescent method for the real-time measurement of poly(ADP-ribose) polymerase 1 activity. Anal. Biochem. 545, 91–97.
  17. Matveeva E.A., Mathbout L.F., Fondufe-Mittendorf Y.N. (2019) PARP1 is a versatile factor in the regulation of mRNA stability and decay. Sci. Repts. 91, 1–12.
  18. Belousova E.A., Ishchenko A.A., Lavrik O.I. (2018) DNA is a new target of PARP3. Sci. Rep. 8, 4176.
  19. Kosova A.A., Kutuzov M.M., Evdokimov A.N., Ilina E.S., Belousova E.A., Romanenko S.A., Trifonov V.A., Khodyreva S.N., Lavrik O.I. (2019) Poly(ADP-ribosyl)ation and DNA repair synthesis in the extracts of naked mole rat, mouse, and human cells. Aging (Albany NY). 11, 2852–2873.
  20. Белоусова Е.А., Кутузов М.М., Иванкина П.А., Ищенко А.А., Лаврик О.И. (2018) Новый путь репарации разрывов ДНК с участием PARP3 и белков эксцизионной репарации оснований. ДАН. 482, 96–100.
  21. Talhaoui I., Lebedeva N.A., Zarkovic G., Saint-Pierre C., Kutuzov M.M., Sukhanova M.V., Matkarimov B.T., Gasparutto D., Saparbaev M.K., Lavrik O.I., Ishchenko A.A. (2016) Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro. Nucl. Acids Res. 44, 9279−9295.
  22. Munnur D., Ahel I. (2017) Reversible mono-ADP-ribosylation of DNA breaks. FEBS J. 284, 4002–4016.
  23. Zarkovic G., Belousova E.A., Talhaoui I., Saint-Pierre C., Kutuzov M.M., Matkarimov B.T., Biard D., Gasparutto D., Lavrik O.I., Ishchenko A.A. (2018) Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. Nucl. Acids Res. 46, 2417−2431.
  24. Lebedeva N.A., Khodyreva S.N., Favre A., Lavrik O.I. (2003) AP endonuclease 1 has no biologically significant 3'–5'-exonuclease activity. Biochem. Biophys. Res. Commun. 300, 182–187.
  25. Драчкова И.А., Петрусева И.О., Сафронов И.В., Захаренко А.Л., Шишкин Г.В., Лаврик О.И., Ходырева С.Н. (2001) Реагенты для модификации белково-нуклеиновых комплексов. II. Сайт-специфическая фотомодификация комплексов ДНК-полимеразы β праймерами, элонгированными экзо-N-замещенными арилазидными производными dCTP. Биоорган. химия. 27, 197–204.
  26. Amé J.C., Kalisch T., Dantzer F., Schreiber V. (2011) Purification of recombinant poly(ADP-ribose) polymerases. Meth. Mol. Biol. 780, 135–152.
  27. Biade S., Sobol R.W., Wilson S.H., Matsumoto Y. (1998) Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA. J. Biol. Chem. 273, 898–902.
  28. Rio D.C., Ares M. Jr.., Hannon G.J., Nilsen T.W. (2010) Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harb. Protoc. pdb.prot.5439.
  29. Bradford M.A. (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
  30. Ilina E.S., Lavrik O.I., Khodyreva S.N. (2008) Ku antigen interacts with abasic sites. Biochim. Biophys. Acta. 1784, 1777–1785.
  31. Ilina E.S., Khodyreva S.N., Lavrik O.I. (2018) Unusual interaction of human apurinic/apyrimidinic endonuclease 1 (APE1) with abasic sites via the Schiff-base-dependent mechanism. Biochimie. 150, 88–99.
  32. Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 277, 680–685.
  33. Sambrook J., Fritsch E.F., Maniatis T. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press., 2nd Ed.
  34. Savelyev N.V., Shepelev N.M., Lavrik O.I., Rubtsova M.P., Dontsova O.A. (2021) PARP1 regulates the biogenesis and activity of telomerase complex through modification of H/ACA-Proteins. Front. Cell Dev. Biol. 9, 621134.
  35. Doseth B., Visnes T., Wallenius A., Ericsson I., Sarno A., Pettersen HS., Flatberg A., Catterall T., Slupphaug G., Krokan H.E., Kavli B. (2011) Uracil-DNA glycosylase in base excision repair and adaptive immunity: Species differences between man and mouse. J. Biol. Chem. 286, 16669–16680.
  36. Doseth B., Ekre C., Slupphaug G., Krokan H.E., Kavli B. (2012) Strikingly different properties of uracil-DNA glycosylases UNG2 and SMUG1 may explain divergent roles in processing of genomic uracil. DNA Repair (Amst). 11, 587−593.
  37. Mol C.D., Hosfield D.J., Tainer J.A. (2000) Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3' ends justify the means. Mutat. Res. 460, 211–229.
  38. Wilson D.M., Barsky D. (2001) The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat. Res. 485, 283–307.
  39. Prasad R., Dyrkheeva N., Williams J., Wilson S.H. (2015) Mammalian base excision repair: functional partnership between PARP-1 and APE1 in AP-site repair. PLoS One. 10, e0124269.
  40. Суханова М.В., Ходырева С.Н., Лаврик О.И. (2004) Поли(ADP-рибоза)-полимераза-1 ингибирует синтез ДНК с вытеснением цепи, катализируемый ДНК-полимеразой β, Биохимия. 69, 558−568.
  41. Sukhanova M., Khodyreva S., Lavrik O. (2010) Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase beta in long patch base excision repair. Mutat. Res. − Fundam. Mol. Mech. Mutagen. 685(1−2), 80−89.
  42. Lebedeva N.A., Rechkunova N.I., El-Khamisy S.F., Lavrik O.I. (2012) Tyrosyl-DNA phosphodiesterase 1 initiates repair of apurinic/apyrimidinic sites. Biochimie. 94, 1749−1753.
  43. Srivastava D.K., Berg B.J., Prasad R., Molina J.T., Beard W.A., Tomkinson A.E., Wilson S.H. (1998) Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J. Biol. Chem. 273, 21203–21209.
  44. Kutuzov M.M., Khodyreva S.N., Amé J.C., Ilina E.S., Sukhanova M.V., Schreiber V., Lavrik O.I. (2013) Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie. 95, 1208−1215.
  45. Kutuzov M.M., Belousova E.A., Kurgina T.A., Ukraintsev A.A., Vasil’eva I.A., Khodyreva S.N., Lavrik O.I. (2021) The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context. Sci. Rep. 11, 4849.
  46. Caldecott K.W. (2019) XRCC1 protein; form and function. DNA Repair (Amst). 81, 102664.
  47. Моор Н.А., Лаврик О.И. (2018) Белок-белковые взаимодействия системы эксцизионной репарации оснований ДНК. Биохимия. 83, 564−576.
  48. Parsons J.L., Dianov G.L. (2013) Co-ordination of base excision repair and genome stability. DNA Repair (Amst).12, 326−333.
  49. Edmonds M.J., Parsons J.L. (2014) Regulation of base excision repair proteins by ubiquitylation. Exp. Cell. Res. 329, 132−138.
  50. Fang Q., Inanc B., Schamus S., Wang X.H., Wei L., Brown A.R., Svilar D., Sugrue K.F., Goellner E.M., Zeng. X, Yates N.A., Lan L., Vens C., Sobol R.W. (2014) HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β. Nat. Commun., 5, 5513.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (103KB)
3.

Baixar (232KB)
4.

Baixar (100KB)
5.

Baixar (318KB)
6.

Baixar (340KB)
7.

Baixar (428KB)
8.

Baixar (261KB)
9.

Baixar (768KB)

Declaração de direitos autorais © Е.С. Ильина, А.С. Кочеткова, Е.А. Белоусова, М.М. Кутузов, О.И. Лаврик, С.Н. Ходырева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies