Poly(ADP-ribose)polymerases 1 and 2: Classical Functions and Interaction with HPF1 ‒ New Histone Poly(ADP-ribosyl)ation Factor

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Poly(ADP-ribose) (PAR) is a negatively charged polymer, linear and branched, consisting of ADP-ribose monomers. This polymer is synthesized by poly(ADP-ribose)polymerase (PARP) enzymes which are activated on DNA damage and use nicotinamide adenine dinucleotide (NAD+) as a substrate. The most studied members of the PARP family, PARP1 and PARP2, are the most important nuclear proteins involved in many cellular processes, including the regulation of DNA repair. PARP1 and PARP2 catalyze both the synthesis and transfer of poly(ADP-ribose) to amino acid residues of target proteins, including autoPARylation. In view of the key role in the regulation of the DNA repair process, PARP1 and PARP2 are promising targets for chemotherapy. Recently, a novel histone PARylation factor (HPF1) has been discovered to modulate PARP1/2 activity by forming a transient joint active site with PARP1/2. In the presence of HPF1, histone modification occurs at serine residues. The general mechanism of interaction between HPF1 and PARP1/2 is only beginning to be elucidated. In this review, we consider the discovery and classical mechanism of this important process in higher eukaryotes, as well as the role of a new histone PARylation factor in this HPF1 process.

Авторлар туралы

T. Kurgina

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
(ICBFM SB RAS)

Email: lavrik@niboch.nsc.ru
Russia, 630090, Novosibirsk

O. Lavrik

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
(ICBFM SB RAS); Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: lavrik@niboch.nsc.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

Әдебиет тізімі

  1. Kraus W.L. (2015) PARPs and ADP-ribosylation: 50 years… and counting. Mol. Cell. 58, 902–910.
  2. Gibson B.A., Kraus W.L. (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424.
  3. Wei H., Yu X. (2016) Functions of PARylation in DNA damage repair pathways. Genomics Proteomics Bioinformatics. 14, 131–139.
  4. Cohen M.S., Chang P. (2018) Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat. Chem. Biol. 14, 236–243.
  5. Kraus W.L. (2020) PARPs and ADP-ribosylation: 60 years on. Genes Dev. 34, 251–253.
  6. O’Sullivan J., Tedim Ferreira M., Gagné J.P., Sharma A.K., Hendzel M.J., Masson J.Y., Poirier G.G. (2019) Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. Nat. Commun. 10(1), 1182.
  7. Perina, D., Mikoč A., Ahel J., Ćetković H., Žaja R., Ahel I. (2014) Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair (Amst.). 23, 4–16.
  8. Žaja R., Mikoč A., Barkauskaite E., Ahel I. (2012) Molecular insights into poly(ADP-ribose) recognition and processing. Biomolecules. 3, 1–17.
  9. Hanzlikova H., Kalasova I., Demin A.A., Pennicott L.E., Cihlarova Z., Caldecott K.W. (2018) The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol. Cell. 71, 319‒331.
  10. Hanzlikova H., Gittens W., Krejcikova K., Zeng Z., Caldecott K.W. (2017) Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res. 45, 2546–2557.
  11. Buch-Larsen S.C., Rebak A.K.L.F.S., Hendriks I.A., Nielsen M.L. (2021) Temporal and site-specific ADP-ribosylation dynamics upon different genotoxic stresses. Cells. 10(11), 2927.
  12. Hoch N.C., Polo L.M. (2019) ADP-ribosylation: from molecular mechanisms to human disease. Genet. Mol. Biol. 43, e20190075.
  13. Ray Chaudhuri A., Nussenzweig A. (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621.
  14. Soldani C., Scovassi A.I. (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 7, 321–328.
  15. D’Amours D., Sallmann F.R., Dixit V.M., Poirier G.G. (2001) Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J. Cell Sci. 114(Pt. 20), 3771–3778.
  16. D’Amours D., Desnoyers S., D’Silva I., Poirier G.G. (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342(Pt. 2), 249–268.
  17. Lavrik O.I. (2020) PARPs’ impact on base excision DNA repair. DNA Repair (Amst.). 93, 102911.
  18. Vasil’eva I., Moor N., Anarbaev R., Kutuzov M., Lavrik O. (2021) Functional roles of PARP2 in assembling protein‒protein complexes involved in base excision DNA repair. Int. J. Mol. Sci. 22, 4679.
  19. Ходырева С.Н., Лаврик О.И. (2016) Поли(ADP-рибоза)полимераза 1 – ключевой регулятор репарации ДНК. Молекуляр. биология. 50, 655–673.
  20. Sukhanova M.V., Hamon L., Kutuzov M.M., Joshi V., Abrakhi S., Dobra I., Curmi P.A., Pastre D., Lavrik O.I. (2019) A single-molecule atomic force microscopy study of PARP1 and PARP2 recognition of base excision repair DNA intermediates. J. Mol. Biol. 431, 2655–2673.
  21. Moor N.A., Vasil’eva I.A., Kuznetsov N.A., Lavrik O.I. (2020) Human apurinic/apyrimidinic endonuclease 1 is modified in vitro by poly(ADP-ribose) polymerase 1 under control of the structure of damaged DNA. Biochimie. 168, 144–155.
  22. Суханова М.В. Лаврик О.И., Ходырева С.Н. (2004) Поли(ADP-рибозо)полимераза-1 ‒ регулятор белково-нуклеиновых взаимодействий в процессах, возникающих при генотоксическом воздействии. Молекуляр. биология. 38, 834‒847.
  23. Sukhanova M.V., Khodyreva S.N., Lebedeva N.A., Prasad R., Wilson S.H., Lavrik O.I. (2005) Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase β and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Res. 33, 1222–1229.
  24. Sukhanova M., Khodyreva S., Lavrik O. (2010) Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase β in long patch base excision repair. Mutat. Res. 685, 80–89.
  25. Моор Н.А., Лаврик О.И. (2018) Белок-белковые взаимодействия системы эксцизионной репарации оснований ДНК. Биохимия. 83, 564‒576.
  26. Kutuzov M.M., Belousova E.A., Kurgina T.A., Ukraintsev A.A., Vasil’eva I.A., Khodyreva S.N., Lavrik O.I. (2021) The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context. Sci. Rep. 11, 4849.
  27. Caron M.C., Sharma A.K., O’Sullivan J., Myler L.R., Ferreira M.T., Rodrigue A., Coulombe Y., Ethier C., Gagné J.P., Langelier M.F., Pascal J.M., Finkelstein I.J., Hendzel M.J., Poirier G.G., Masson J.Y. (2019) Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat. Commun. 10, 2954.
  28. Krasikova Y., Rechkunova N., Lavrik O. (2021) Nucleotide excision repair: from molecular defects to neurological abnormalities. Int. J. Mol. Sci. 22, 6220.
  29. Maltseva E.A., Rechkunova N.I., Sukhanova M.V., Lavrik O.I. (2015) Poly(ADP-ribose) polymerase 1 modulates interaction of the nucleotide excision repair factor XPC-RAD23B with DNA via poly(ADP-ribosyl)ation. J. Biol. Chem. 290, 21811–21820.
  30. Flippot R., Patrikidou A., Aldea M., Colomba E., Lavaud P., Albigès L., Naoun N., Blanchard P., Terlizzi M., Garcia C., Bernard-Tessier A., Fuerea A., Di Palma M., Escudier B., Loriot Y., Baciarello G., Fizazi K. (2022) PARP inhibition, a new therapeutic avenue in patients with prostate cancer. Drugs. 82(7), 719‒733.
  31. Spiegel J.O., van Houten B., Durrant J.D. (2021) PARP1: structural insights and pharmacological targets for inhibition. DNA Repair (Amst.). 103, 103125.
  32. Dizdar O., Arslan C., Altundag K. (2015) Advances in PARP inhibitors for the treatment of breast cancer. Exp. Opin. Pharmacother. 16, 2751–2758.
  33. Curtin N.J., Szabo C. (2020) Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat. Rev. Drug Discov. 19, 711–736.
  34. Schreiber V., Illuzzi G., Héberlé E., Dantzer F. (2015) From poly(ADP-ribose) discovery to PARP inhibitors in cancer therapy. Bull. Cancer. 102, 863–873.
  35. Sim H.W., Galanis E., Khasraw M. (2022) PARP inhibitors in glioma: a review of therapeutic opportunities. Cancers (Basel). 14. 1003.
  36. Sonnenblick A., de Azambuja E., Azim H.A., Piccart M. (2015) An update on PARP inhibitors‒moving to the adjuvant setting. Nat. Rev. Clin. Oncol. 12, 27–41.
  37. Gibbs-Seymour I., Fontana P., Rack J.G.M., Ahel I. (2016) HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol. Cell. 62, 432–442.
  38. Suskiewicz M.J., Zobel F., Ogden T.E.H., Fontana P., Ariza A., Yang J.C., Zhu K., Bracken L., Hawthorne W.J., Ahel D., Neuhaus D., Ahel I. (2020) HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature. 579, 598.
  39. Bonfiglio J.J., Fontana P., Zhang Q., Colby T., Gibbs-Seymour I., Atanassov I., Bartlett E., Zaja R., Ahel I., Matic I. (2017) Serine ADP-ribosylation depends on HPF1. Mol. Cell. 65, 932‒940.
  40. Palazzo L., Leidecker O., Prokhorova E., Dauben H., Matic I., Ahel I. (2018) Serine is the major residue for ADP-ribosylation upon DNA damage. Elife. 7, e34334.
  41. Leidecker O., Bonfiglio J.J., Colby T., Zhang Q., Atanassov I., Zaja R., Palazzo L., Stockum A., Ahel I., Matic I. (2016) Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat. Chem. Biol. 12, 998–1000.
  42. Sun F.H., Zhao P., Zhang N., Kong L.L., Wong C.C.L., Yun C.H. (2021) HPF1 remodels the active site of PARP1 to enable the serine ADP-ribosylation of histones. Nat. Commun. 12, 1028.
  43. Chambon P., Weill J.D., Mandel P. (1963) Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11, 39–43.
  44. Chambon P., Weill J.D., Doly J., Strosser M.T., Mandel P. (1966) On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem. Biophys. Res. Commun. 25, 638–643.
  45. Fujimura S., Hasegawa S., Shimizu Y., Sugimura T. (1967) Polymerization of the adenosine 5'-diphosphate-ribose moiety of nicotinamide-adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions. Biochim. Biophys. Acta. 145, 247–259.
  46. Sugimura T., Miwa M. (1994) Poly(ADP-ribose): historical perspective. Mol. Cell. Biochem. 138, 5–12.
  47. Langelier M.F., Eisemann T., Riccio A.A., Pascal J.M. (2018) PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr. Opin. Struct. Biol. 53, 187–198.
  48. Amé J.C., Spenlehauer C., de Murcia G. (2004) The PARP superfamily. BioEssays. 26, 882–893.
  49. Otto H., Reche P.A., Bazan F., Dittmar K., Haag F., Koch-Nolte F. (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics. 6, 139.
  50. Ferro A.M., Minaga T., Piper W.N., Kun E. (1978) Analysis of larger than tetrameric poly(adenosine diphosphoribose) by a radioimmunoassay in nuclei separated in organic solvents. Biochim. Biophys. Acta. 519, 291–305.
  51. Hassa P.O., Haenni S.S., Elser M., Hottiger M.O. (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev. 70, 789–829.
  52. Alemasova E.E., Lavrik O.I. (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res. 47, 3811–3827.
  53. Koh D.W., Dawson V.L., Dawson T.M. (2005) The road to survival goes through PARG. Cell Cycle. 4, 397–399.
  54. Han S., Tainer J.A. (2001) The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Int. J. Med. Microbiol. 291, 523–529.
  55. Schreiber V., Dantzer F., Amé J.C., de Murcia G. (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell. Biol. 7, 517–528.
  56. Pascal J.M., Ellenberger T. (2015) The rise and fall of poly(ADP-ribose): an enzymatic perspective. DNA Repair (Amst.). 32, 10–16.
  57. Amé J.C., Rolli V., Schreiber V., Niedergang C., Apiou F., Decker P., Muller S., Höger T., Ménissier-de Murcia J., de Murcia G. (1999) PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274, 17860–17868.
  58. Eisemann T., Pascal J.M. (2020) Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Cell. Mol. Life Sci. 77, 19–33.
  59. Ghosh R., Roy S., Kamyab J., Dantzer F., Franco S. (2016) Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways. DNA Repair (Amst.). 45, 56–62.
  60. Ruf A., de Murcia J.M., de Murcia G.M., Schulz G.E. (1996) Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc. Natl. Acad. Sci. USA. 93, 7481–7485.
  61. Langelier M.F., Planck J.L., Roy S., Pascal J.M. (2012) Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science. 336, 728–732.
  62. Langelier M.F., Ruhl D.D., Planck J.L., Kraus W.L., Pascal J.M. (2010) The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J. Biol. Chem. 285, 18877–18887.
  63. Langelier M.F., Planck J.L., Roy S., Pascal J.M. (2011) Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J. Biol. Chem. 286, 10690–10701.
  64. Prokhorova E., Zobel F., Smith R., Zentout S., Gibbs-Seymour I., Schützenhofer K., Peters A., Groslambert J., Zorzini V., Agnew T., Brognard J., Nielsen M.L., Ahel D., Huet S., Suskiewicz M.J., Ahel I. (2021) Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nat. Commun. 12, 4055.
  65. Rudolph J., Muthurajan U.M., Palacio M., Mahadevan J., Roberts G., Erbse A.H., Dyer P.N., Luger K. (2021) The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Mol. Cell. 81, 4994‒5006.
  66. Tao Z., Gao P., Liu H.W. (2009) Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications. J. Am. Chem. Soc. 131, 14258–14260.
  67. Obaji E., Haikarainen T., Lehtiö L. (2018) Structural basis for DNA break recognition by ARTD2/PARP2. Nucleic Acids Res. 46, 12154–12165.
  68. Obaji E., Haikarainen T., Lehtiö L. (2016) Characterization of the DNA dependent activation of human ARTD2/PARP2. Sci. Rep. 6, 34487.
  69. Rudolph J., Mahadevan J., Dyer P., Luger K. (2018) Poly(ADP-ribose) polymerase 1 searches DNA via a “monkey bar” mechanism. Elife. 7, e37818.
  70. Riccio A.A., Cingolani G., Pascal J.M. (2016) PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. N-ucleic Acids Res. 44, 1691–1702.
  71. Sukhanova M.V., Abrakhi S., Joshi V., Pastre D., Kutuzov M.M., Anarbaev R.O., Curmi P.A., Hamon L., Lavrik O.I. (2015) Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging. Nucleic Acids Res. 44, e60.
  72. Kutuzov M.M., Khodyreva S.N., Amé J.C., Ilina E.S., Sukhanova M.V., Schreiber V., Lavrik O.I. (2013) Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie. 95, 1208–1215.
  73. D’Silva I., Pelletier J.D., Lagueux J., D’Amours D., Chaudhry M.A., Weinfeld M., Lees-Miller S.P., Poirier G.G. (1999) Relative affinities of poly(ADP-ribose) polymerase and DNA-dependent protein kinase for DNA strand interruptions. Biochim. Biophys. Acta. 1430, 119–126.
  74. Langelier M.F., Riccio A.A., Pascal J.M. (2014) PARP-2 and PARP-3 are selectively activated by 5' phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res. 42, 7762–7775.
  75. Cistulli C., Lavrik O.I., Prasad R., Hou E., Wilson S.H. (2004) AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate. DNA Repair (Amst.). 3, 581–591.
  76. Khodyreva S.N., Prasad R., Ilina E.S., Sukhanova M.V., Kutuzov M.M., Liu Y., Hou E.W., Wilson S.H., Lavrik O.I. (2010) Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). Proc. Natl. Acad. Sci. USA. 107, 22090–22095.
  77. Lavrik O.I., Prasad R., Sobol R.W., Horton J.K., Ackerman E.J., Wilson S.H. (2001) Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate. Evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair. J. Biol. Chem. 276, 25541–25548.
  78. Ménissier de Murcia J., Ricoul M., Tartier L., Niedergang C., Huber A., Dantzer F., Schreiber V., Amé J.C., Dierich A., LeMeur M., Sabatier L., Chambon P., de Murcia G. (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22, 2255–2263.
  79. Nicolás L., Martínez C., Baró C., Rodríguez M., Baroja-Mazo A., Sole F., Flores J.M., Ampurdanés C., Dantzer F., Martin-Caballero J., Aparicio P., Yelamos J. (2010) Loss of poly(ADP-ribose) polymerase-2 leads to rapid development of spontaneous T-cell lymphomas in p53-deficient mice. Oncogene. 29, 2877–2883.
  80. Farreś J., Martín-Caballero J., Martínez C., Lozano J. J., Llacuna L., Ampurdanés C., Ruiz-Herguido C., Dantzer F., Schreiber V., Villunger A., Bigas A., Yélamos J. (2013) Parp-2 is required to maintain hematopoiesis following sublethal γ-irradiation in mice. Blood. 122, 44–54.
  81. Farrés J., Llacuna L., Martin-Caballero J., Martínez C., Lozano J.J., Ampurdanés C., López-Contreras A.J., Florensa L., Navarro J., Ottina E., Dantzer F., Schreiber V., Villunger A., Fernández-Capetillo O., Yélamos J. (2015) PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors. Cell Death Differ. 22, 1144–1157.
  82. Alemasova E.E., Naumenko K.N., Kurgina T.A., Anarbaev R.O., Lavrik O.I. (2018) The multifunctional protein YB-1 potentiates PARP1 activity and decreases the efficiency of PARP1 inhibitors. Oncotarget. 9, 23349-23365.
  83. Naumenko K.N., Sukhanova M.V., Hamon L., Kurgina T.A., Alemasova E.E., Kutuzov M.M., Pastré, D., Lavrik O.I. (2020) Regulation of poly(ADP-ribose) polymerase 1 activity by Y-box-binding protein 1. Biomolecules. 10, 1325.
  84. Sun X., Fu K., Hodgson A., Wier E.M., Wen M.G., Kamenyeva O., Xia X., Koo L.Y., Wan F. (2016) Sam68 is required for DNA damage responses via regulating poly(ADP-ribosyl)ation. PLoS Biol. 14, e1002543.
  85. Sukhanova M.V., Singatulina A.S., Pastré D., Lavrik O.I. (2020) Fused in sarcoma (FUS) in DNA repair: tango with poly(ADP-ribose) polymerase 1 and compartmentalisation of damaged DNA. Int. J. Mol. Sci. 21, 7020.
  86. Obaji E., Maksimainen M.M., Galera-Prat A., Lehtiö L. (2021) Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition. Nat. Communs. 12, 3479.
  87. Dawicki-McKenna J.M., Langelier M.F., DeNizio J.E., Riccio A.A., Cao C.D., Karch K.R., McCauley M., Steffen J.D., Black B.E., Pascal J.M. (2015) PARP-1 activation requires local unfolding of an autoinhibitory domain. Mol. Cell. 60, 755–768.
  88. Langelier M.F., Pascal J M. (2013) PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr. Opin. Struct. Biol. 23, 134–143.
  89. Ogden T.E.H., Yang J.C., Schimpl M., Easton L.E., Underwood E., Rawlins P.B., McCauley M.M., Langelier M.F., Pascal J.M., Embrey K.J., Neuhaus D. (2021) Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition. Nucleic Acids Res. 49, 2266–2288.
  90. Bauer P.I., Buki K.G., Hakam A., Kun E. (1990) Macromolecular association of ADP-ribosyltransferase and its correlation with enzymic activity. Biochem. J. 270, 17–26.
  91. Eustermann S., Videler H., Yang J.C., Cole P.T., Gruszka D., Veprintse D., Neuhaus D. (2011) The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J. Mol. Biol. 407, 149–170.
  92. Buki K.G., Bauer P.I., Hakam A., Kun E. (1995) Identification of domains of poly(ADP-ribose) polymerase for protein binding and self-association. J. Biol. Chem. 270, 3370–3377.
  93. Vasil’eva I.A., Anarbaev R.O., Moor N.A., Lavrik O.I. (2019) Dynamic light scattering study of base excision DNA repair proteins and their complexes. Biochim. Biophys. Acta. 1867, 297–305.
  94. Panzeter P.L., Althaus F.R. (1994) DNA strand break-mediated partitioning of poly(ADP-ribose) polymerase function. Biochemistry. 33, 9600–9605.
  95. Pion E., Ullmann G.M., Amé J.C., Gérard D., de Murcia G., Bombarda E. (2005) DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation. Biochemistry. 44, 14670–14681.
  96. Li P., Zhen Y., Yu Y. (2019) Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry. Methods Enzymol. 626, 301–321.
  97. Zhang Y., Wang J., Ding M., Yu Y. (2013) Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat. Methods. 10, 981–984.
  98. Martello R., Leutert M., Jungmichel S., Bilan V., Larsen S.C., Young C., Hottiger M.O., Nielsen M.L. (2016) Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat. Commun. 7, 12917.
  99. Gaullier G., Roberts G., Muthurajan U.M., Bowerman S., Rudolph J., Mahadevan J., Jha A., Rae P.S., Luger K. (2020) Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1. PLoS One. 15, e0240932.
  100. Rudolph J., Roberts G., Luger K. (2021) Histone PARylatio-n factor 1 contributes to the inhibition of PARP1 by cancer drugs. Nat. Commun. 12, 736.
  101. Bilokapic S., Suskiewicz M.J., Ahel I., Halic M. (2020) Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin. Nature. 585, 609–613.
  102. Rudolph J., Roberts G., Muthurajan U.M., Luger K. (2021) HPF1 and nucleosomes mediate a dramatic switch in activity of PARP1 from polymerase to hydrolase. Elife. 10, e65773.
  103. Marsischky G.T., Wilson B.A., Collier R.J. (1995) Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation: evidence for active site similarities to the ADP-ribosylating toxins. J. Biol. Chem. 270, 3247–3254.
  104. Dodson G., Wlodawer A. (1998) Catalytic triads and their relatives. Trends Biochem. Sci. 23, 347–352.
  105. Kurgina T.A., Moor N.A., Kutuzov M.M., Naumenko K.N., Ukraintsev A.A., Lavrik O.I. (2021) Dual function of HPF1 in the modulation of PARP1 and PARP2 activities. Commun. Biol. 4, 1259.
  106. Langelier M.F., Billur R., Sverzhinsky A., Black B.E., Pascal J.M. (2021) HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications. Nat. Commun. 12, 6675.
  107. Desmarais Y., Ménard L., Lagueux J., Poirier G.G. (1991) Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity. Biochim. Biophys. Acta. 1078, 179–186.
  108. Mortusewicz O., Amé J.C., Schreiber V., Leonhardt H. (2007) Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res. 35, 7665–7675.
  109. Lin X., Jiang W., Rudolph J., Lee B.J., Luger K., Zha S. (2022) PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites. Nucleic Acids Res. 50, 3958–3973.
  110. Crawford K., Bonfiglio J.J., Mikoč A., Matic I., Ahel I. (2018) Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crit. Rev. Biochem. Mol. Biol. 53, 64–82.
  111. Uchida K., Suzuki H., Maruta H., Abe H., Aoki K., Miwa M., Tanuma S.-I. (1993) Preferential degradation of protein-bound (ADP-ribose), by nuclear poly(ADP-ribose) glycohydrolase from human placenta. J. Biol. Chem. 268, 3194–3200.
  112. Hendriks I.A., Buch-Larsen S.C., Prokhorova E., Elsborg J.D., Rebak A.K.L.F.S., Zhu K., Ahel D., Lukas C., Ahel I., Nielsen M.L. (2021) The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome. Nat. Commun. 12, 5893.
  113. Sharifi R., Morra R., Appel C.D., Tallis M., Chioza B., Jankevicius G., Simpson M.A., Matic I., Ozkan E., Golia B., Schellenberg M.J., Weston R., Williams J.G., Rossi M.N., Galehdari H., Krahn J., Wan A., Trembath R.C., Crosby A.H., Ahel D., Hay R., Ladurner A.G., Timinszky G., Williams R.S., Ahel I. (2013) Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 32, 1225–1237.
  114. Mashimo M., Kato J., Moss J. (2014) Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. DNA Repair. 23, 88–94.
  115. Oka S., Kato J., Moss J. (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 281, 705–713.
  116. Fontana P., Bonfiglio J.J., Palazzo L., Bartlett E., Matic I., Ahel I. (2017) Serine ADP-ribosylation reversal by the hydrolase ARH3. Elife. 6, e28533.
  117. Abplanalp J., Leutert M., Frugier E., Nowak K., Feurer R., Kato J., Kistemaker H.V.A., Filippov D.V., Moss J., Caflisch A., Hottiger M.O. (2017) Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat. Commun. 8, 2055.
  118. Slade D., Dunstan M.S., Barkauskaite E., Weston R., Lafite P., Dixon N., Ahel M., Leys D., Ahel I. (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature. 477, 616–622.
  119. Huang H., Lin S., Garcia B.A., Zhao Y. (2015) Quantitative proteomic analysis of histone modifications. Chem. Rev. 115, 2376.
  120. Seibert M., Krüger M., Watson N.A., Sen O., Daum J.R., Slotman J.A., Braun T., Houtsmuller A.B., Gorbsky G.J., Jacob R., Kracht M., Higgins J.M.G., Schmitz M.L. (2019) CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. J. Cell Biol. 218, 1164.
  121. Hendzel M.J., Wei Y., Mancini M.A., van Hooser A., Ranalli T., Brinkley B.R., Bazett-Jones D.P., Allis C.D. (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 106, 348–360.
  122. Hananya N., Daley S.K., Bagert J.D., Muir T.W. (2021) Synthesis of ADP-ribosylated histones reveals site-specific impacts on chromatin structure and function. J. Am. Chem. Soc. 143, 10847–10852.
  123. Sawicka A., Hartl D., Goiser M., Pusch O., Stocsits R.R., Tamir I.M., Mechtler K., Seiser C. (2014) H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress. Genome Res. 24, 1808.
  124. Cheung P., Tanner K.G., Cheung W.L., Sassone-Corsi P., Denu J.M., Allis C.D. (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell. 5, 905–915.
  125. Clayton A.L., Mahadevan L.C. (2003) MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett. 546, 51–58.
  126. Simboeck E., Sawicka A., Zupkovitz G., Senese S., Winter S., Dequiedt F., Ogris E., di Croce L., Chiocca S., Seiser C. (2010) A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors. J. Biol. Chem. 285, 41062–41073.
  127. Liszczak G., Diehl K.L., Dann G.P., Muir T.W. (2018) Acetylation blocks DNA damage-induced chromatin ADP-ribosylation. Nat. Chem. Biol. 14, 837–840.
  128. Miller K.M., Tjeertes J.V., Coates J., Legube G., Polo S.E., Britton S., Jackson S.P. (2010) Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat. Struct. Mol Biol. 17, 1144–1151.
  129. Mao Z., Hine C., Tian X., van Meter M., Au M., Vaidya A., Seluanov A., Gorbunova V. (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science. 332, 1443–1446.
  130. Michishita E., McCord R.A., Berber E., Kioi M., Padilla-Nashm H., Damian M., Cheung P., Kusumoto R., Kawahara T.L.A., Barrett J.C., Chang H.Y., Bohr V.A., Ried T., Gozani O., Chua K.F. (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 452, 492.
  131. Tjeertes J.V., Miller K.M., Jackson S.P. (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J. 28, 1878–1889.
  132. Maluchenko N.V., Sultanov D.S., Kotova E.Y., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. (2019) Histone tails promote PARP1-dependent structural rearrangements in nucleosomes. Dokl. Biochem. Biophys. 489, 377–379.
  133. Maluchenko N.V., Nilov D.K., Pushkarev S.V., Kotova E.Y., Gerasimova N.S., Kirpichnikov M.P., Langelier M.-F., Pascal J.M., Akhtar M.S., Feofanov A.V., Studitsky V.M. (2021) Mechanisms of nucleosome reorganization by PARP1. Int. J. Mol. Sci. 22, 12127.
  134. Kotova E.Y., Hsieh F.-K., Chang H.-W., Maluchenko N.V., Langelier M.-F., Pascal J.M., Luse D.S., Feofanov A.V., Studitsky V.M. (2022) Human PARP1 facilitates transcription through a nucleosome and histone displacement by Pol II in vitro. Int. J. Mol. Sci. 23, 7107.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (92KB)
3.

Жүктеу (270KB)
4.

Жүктеу (249KB)
5.

Жүктеу (622KB)

© Т.А. Кургина, О.И. Лаврик, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>