Oxidative Probing of the G4 DNA Structure by ZnP1 Porphyrin within Sequences of MYC and TERT Promotors

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The formation of G4 structures in a DNA double helix competes with the complementary strand, which can change the equilibrium G4 structures studied on single-strand models by classical structural methods. A relevant task is to develop methods for detecting and localizing G4 in extended double-stranded (ds) DNA in the promoter regions of the genome. The porphyrin derivative ZnP1 selectively binds and leads to photo-induced oxidation of guanine in G4 structures on single-stranded (ss) and dsDNA model systems. In this research, we show the oxidative effect of ZnP1 on native sequences of MYC and TERT oncogene promoters that potentially capable to form G4 structures. Single strand breaks in the guanine rich sequence caused by ZnP1 oxidation and subsequent cleavage of the DNA strand by Fpg glycosylase were identified and assigned to the nucleotide sequence. The detected break sites corresponded to sequences potentially capable of forming G4 structures. New data were obtained on the possibility of folding G4 structures in the presence of a complementary strand in the context of the DNA double helix of the natural sequence.

作者简介

G. Chashchina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: uzhny@mail.ru
Russia, 119991, Moscow

D. Kaluzhny

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: uzhny@mail.ru
Russia, 119991, Moscow

参考

  1. Besnard E., Babled A., Lapasset L., Milhavet O., Parrinello H., Dantec C., Marin J.M., Lemaitre J.M. (2012) Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 19, 837‒844.
  2. Siddiqui-Jain A., Grand C.L., Bearss D.J., Hurley L.H. (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA. 99, 11593‒11598.
  3. Spiegel J., Adhikari S., Balasubramanian S. (2020) The structure and function of DNA G-quadruplexes. Trends Chem. 2, 123‒136.
  4. Marsico G., Chambers V.S., Sahakyan A.B., McCauley P., Boutell J.M., Antonio M.D., Balasubramanian S. (2019) Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 47, 3862‒3874.
  5. Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S. (2015) High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877‒881.
  6. Miskiewicz J., Sarzynska J., Szachniuk M. (2021) How bioinformatics resources work with G4 RNAs. Brief. Bioinformatics. 22, bbaa201.
  7. Grün J.T., Schwalbe H. (2022) Folding dynamics of polymorphic G-quadruplex structures. Biopolymers. 113, e23477.
  8. Sun D., Hurley L.H. (2010) Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay. Methods Mol. Biol. 608, 65‒79.
  9. Guo J.U., Bartel D.P. (2016) RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science. 353(6306), aaf5371.
  10. Beniaminov A.D., Novikov R.A., Mamaeva O.K., Mitkevich V.A., Smirnov I.P., Livshits M.A., Shchyolkina A.K., Kaluzhny D.N. (2016) Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin. Nucleic Acids Res. 44, 10031‒10041.
  11. Chashchina G.V., Beniaminov A.D., Kaluzhny D.N. (2019) Stable G-quadruplex structures of oncogene promoters induce potassium-dependent stops of thermostable DNA polymerase. Biochemistry (Moscow). 84, 562‒569.
  12. Kovaleva O.A., Tsvetkov V.B., Mamaeva O.K., Ol’shevskaya V.A., Makarenkov A.V., Dezhenkova L.G., Semeikin A.S., Borisova O.F., Shtil A.A., Shchyolkina A.K., Kaluzhny D.N. (2014) Preferential DNA photocleavage potency of Zn(II) over Ni(II) derivatives of carboxymethyl tetracationic porphyrin: the role of the mode of binding to DNA. Eur. Biophys. J. 43, 545‒554.
  13. Beniaminov A., Chashchina G., Shchyolkina A., Kaluzhny D. (2021) Oxidative probing of the G4 DNA structure induced in double-stranded DNA by molecular crowding or pyridostatin. Biochimie. 191, 33‒36.
  14. Beniaminov A., Shchyolkina A., Kaluzhny D. (2019) Conformational features of intramolecular G4-DNA constrained by single-nucleotide loops. Biochimie. 160, 122‒128.
  15. Chaires J.B., Trent J.O., Gray R.D., Dean W.L., Buscaglia R., Thomas S.D., Miller D.M. (2014) An improved model for the hTERT promoter quadruplex. PloS One. 9, e115580.
  16. Monsen R.C., DeLeeuw L., Dean W.L., Gray R.D., Sabo T.M., Chakravarthy S., Chaires J.B., Trent J.O. (2020) The hTERT core promoter forms three parallel G-quadruplexes. Nucleic Acids Res. 48, 5720‒5734.
  17. Lim K.W., Lacroix L., Yue D.J.E., Lim J.K.C., Lim J.M.W., Phan A.T. (2010) Coexistence of two distinct G-quadruplex conformations in the hTERT promoter. J. Am. Chem. Soc. 132, 12331‒12342.
  18. Ambrus A., Chen D., Dai J., Jones R.A., Yang D. (2005) Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization. Biochemistry. 44, 2048‒2058.
  19. Phan A.T., Modi Y.S., Patel D.J. (2004) Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J. Am. Chem.Soc. 126, 8710‒8716.
  20. Phan A.T., Kuryavyi V., Gaw H.Y., Patel D.J. (2005) Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat. Chem. Biol. 1, 167‒173.
  21. Arutyunyan A.F., Tevonyan L.L., Beniaminov A.D., Yegorov Y.E., Kaluzhny D.N. (2021) The phototoxic effect of water-soluble porphyrins on human clear cell renal cell carcinoma line Caki-1. Biophysics. 66, 273‒277.
  22. Miyoshi D., Karimata H., Sugimoto N. (2006) Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions. J. Am. Chem. Soc. 128, 7957‒7963.
  23. Zheng K.W., Chen Z., Hao Y.H., Tan Z. (2010) Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA. Nucleic Acids Res. 38, 327‒338.
  24. Liu L.-Y., Ma T.-Z., Zeng Y.-L., Liu W., Mao Z.-W. (2022) Structural basis of pyridostatin and its derivatives specifically binding to G-quadruplexes. J. Am. Chem. Soc. 144, 11878‒11887.
  25. Severov V., Tsvetkov V., Barinov N., Babenko V., Klinov D., Pozmogova G. (2022) Spontaneous DNA synapsis by forming noncanonical intermolecular structures. Polymers. 14, 2118.
  26. Hasanau T., Pisarev E., Kisil O., Nonoguchi N., Le Calvez-Kelm F., Zvereva M. (2022) Detection of TERT promoter mutations as a prognostic biomarker in gliomas: methodology, prospects, and advances. Biomedicines. 10, 728.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (360KB)
3.

下载 (201KB)
4.

下载 (268KB)
5.

下载 (889KB)
6.

下载 (110KB)

版权所有 © Г.В. Чащина, Д.Н. Калюжный, 2023

##common.cookie##