Abnormal mTOR Signaling Pathway Activity in Autism Spectrum Disorders: Prospects of Mechanism-Based Therapy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Autism spectrum disorder (ASD) is a developmental disorder characterized by the early onset of communication, learning, and behavioral problems. The syndromic form of ASD is caused by monogenic mutations, in the case when it is not possible to find genetic or other known mechanisms, the term “idiopathic autism” is used. A significant part of both syndromic and idiopathic autism is associated with translational deregulation dependent on the mechanistic target of rapamycin (mTOR). In this review, we present both bioinformatic and experimental data that link the mTOR signaling pathway to maternal autoantibody-induced autism and childhood autoimmune neuropsychiatric disorders such as Sydenham’s chorea and pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections (PANDAS). The need for ASD subtyping and the possibility of mechanism-based therapy with inhibitors of the mTOR signaling pathway are also discussed.

作者简介

E. Trifonova

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: trifonova.k@rambler.ru
Russia, 630090, Novosibirsk

А. Kotliarova

Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics,
Siberian Branch, Russian Academy of Sciences

Email: trifonova.k@rambler.ru
Russia, 630117 , Novosibirsk

A. Kochetov

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: trifonova.k@rambler.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

参考

  1. Yoo H. (2015) Genetics of autism spectrum disorder: current status and possible clinical applications. Exp. Neurobiol. 24, 257–272. https://doi.org/10.5607/en.2015.24.4.257
  2. Winden K.D., Ebrahimi-Fakhari D., Sahin M. (2018) Abnormal mTOR activation in autism. Annu. Rev. Neurosci. 41, 1–23. https://doi.org/10.1146/annurev-neuro-080317-061747
  3. Bockaert J., Marin P. (2015) mTOR in brain physiology and pathologies. Physiol. Rev. 95, 1157–1187. https://doi.org/10.1152/physrev.00038.2014
  4. Trifonova E.A, Klimenko A.I., Mustafin Z.S., Lashin S.A., Kochetov A.V. (2019) The mTOR signaling pathway activity and vitamin D availability control the expression of most autism predisposition genes. Int. J. Mol. Sci. 20, E6332. https://doi.org/10.3390/ijms20246332
  5. Zoghbi H.Y., Bear M.F. (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886. https://doi.org/10.1101/cshperspect.a009886
  6. Onore C., Yang H., Van de Water J., Ashwood P. (2017) Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front. Pediatr. 5, 43. https://doi.org/10.3389/fped.2017.00043
  7. Tylee D.S., Hess J.L., Quinn T.P., Barve R., Huang H., Zhang-James Y., Chang J., Stamova B.S., Sharp F.R., Hertz-Picciotto I., Faraone S.V., Kong S.W., Glatt S.J. (2017) Blood transcriptomic comparison of individuals with and without autism spectrum disorder: a combined-samples mega-analysis. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 174, 181–201. https://doi.org/10.1002/ajmg.b.32511
  8. Jiang H.-Y., Xu L.-L., Shao L., Xia R.M., Yu Z.H., Ling Z.X., Yang F., Deng M., Ruan B. (2016) Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav. Immun. 58, 165–172. https://doi.org/10.1016/j.bbi.2016.06.005
  9. Lee B.K., Magnusson C., Gardner R.M., Blomström Å., Newschaffer C.J., Burstyn I., Karlsson H., Dalman C. (2015) Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav. Immun. 44, 100–105. https://doi.org/10.1016/j.bbi.2014.09.001
  10. Lombardo M.V., Moon H.M., Su J., Palmer T.D., Courchesne E., Pramparo T. (2018) Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol. Psychiatry. 23, 1001–1013. https://doi.org/10.1038/mp.2017.15
  11. Ehninger D., Sano Y., de Vries P.J., Dies K., Franz D., Geschwind D.H., Kaur M., Lee Y.S., Li W., Lowe J.K., Nakagawa J.A., Sahin M., Smith K., Whittemore V., Silva A.J. (2012) Gestational immune activation and Tsc2 haploinsufficiency cooperate to disrupt fetal survival and may perturb social behavior in adult mice. Mol. Psychiatry. 17, 62–70. https://doi.org/10.1038/mp.2010.115
  12. Ramirez-Celis A., Becker M., Nuño M., Schauer J., Aghaeepour N., Van de Water J. (2021) Risk assessment analysis for maternal autoantibody-related autism (MAR-ASD): a subtype of autism. Mol. Psychiatry. 26, 1551–1560. https://doi.org/10.1038/s41380-020-00998-8
  13. Trifonova E.A., Mustafin Z.S., Lashin S.A., Kochetov A.V. (2022) Abnormal mTOR activity in pediatric autoimmune neuropsychiatric and MIA-associated autism spectrum disorders. Int. J. Mol. Sci. 23, 967. https://doi.org/10.3390/ijms23020967
  14. Meltzer A., Van de Water J. (2017) The role of the immune system in autism spectrum disorder. Neuropsychopharmacology. 42, 284–298. https://doi.org/10.1038/npp.2016.158
  15. Williams K.A., Swedo S.E. (2015) Post-infectious autoimmune disorders: Sydenham’s chorea, PANDAS and beyond. Brain Res. 1617, 144–154. https://doi.org/10.1016/j.brainres.2014.09.071
  16. True G. (2019) November Clinical Conversation: understanding PANS and PANDAS. In: Aspire. https://aspire.care/news/november-clinical-conversation-understanding-pans-and-pandas/
  17. Swedo S.E., Leonard H.L., Mittleman B.B., Allen A.J., Rapoport J.L., Dow S.P., Kanter M.E., Chapman F., Zabriskie J. (1997) Identification of children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections by a marker associated with rheumatic fever. Am. J. Psychiatry. 154, 110–112. https://doi.org/10.1176/ajp.154.1.110
  18. Shimasaki C., Frye R.E., Trifiletti R., Cooperstock M., Kaplan G., Melamed I., Greenberg R., Katz A., Fier E., Kem D., Traver D., Dempsey T., Latimer M.E., Cross A., Dunn J.P., Bentley R., Alvarez K., Reim S., Appleman J. (2020) Evaluation of the Cunningham PanelTM in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): changes in antineuronal antibody titers parallel changes in patient symptoms. J. Neuroimmunol. 339, 577138. https://doi.org/10.1016/j.jneuroim.2019.577138
  19. Cunningham M.W. (2012) Streptococcus and rheumatic fever. Curr. Opin. Rheumatol. 24, 408–416. https://doi.org/10.1097/BOR.0b013e32835461d3
  20. Cunningham M.W. (2014) Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int. Rev. Immunol. 33, 314–329. https://doi.org/10.3109/08830185.2014.917411
  21. Gulati P., Gaspers L.D., Dann S.G., Joaquin M., Nobukuni T., Natt F., Kozma S.C., Thomas A.P., Thomas G. (2008) Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab. 7, 456–465. https://doi.org/10.1016/j.cmet.2008.03.002
  22. Jing Z., Sui X., Yao J., Xie J., Jiang L., Zhou Y., Pan H., Han W. (2016) SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIγ/AKT-mediated pathway. Cancer Lett. 372, 226–238. https://doi.org/10.1016/j.canlet.2016.01.006
  23. Fan X., Zhou J., Yan X., Bi X., Liang J., Lu S., Luo L., Zhou D., Yin Z. (2021) Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway. Life Sci. 275, 119355. https://doi.org/10.1016/j.lfs.2021.119355
  24. Cheng Y.-L., Kuo C.-F., Lu S.-L., Omori H., Wu Y.N., Hsieh C.L., Noda T., Wu S.R., Anderson R., Lin C.F., Chen C.L., Wu J.J., Lin Y.S. (2019) Group A Streptococcus induces LAPosomes via SLO/β1 integrin/NOX2/ROS pathway in endothelial cells that are ineffective in bacterial killing and suppress xenophagy. mBio. 10, e02148-19. https://doi.org/10.1128/mBio.02148-19
  25. Wang J., Meng M., Li M., Guan X., Liu J., Gao X., Sun Q., Li J., Ma C., Wei L. (2020) Integrin α5β1, as a receptor of fibronectin, binds the FbaA protein of group A Streptococcus to initiate autophagy during infection. mBio. 11, e00771-20. https://doi.org/10.1128/mBio.00771-20
  26. Toh H., Nozawa T., Minowa-Nozawa A., Hikichi M., Nakajima S., Aikawa C., Nakagawa I. (2020) Group A Streptococcus modulates RAB1- and PIK3C3 complex-dependent autophagy. Autophagy. 16, 334–346. https://doi.org/10.1080/15548627.2019.1628539
  27. Shuid A.N., Jayusman P.A., Shuid N., Ismail J., Nor N.K., Mohamed I.N. (2020) Update on atypicalities of central nervous system in autism spectrum disorder. Brain Sci. 10, E309. https://doi.org/10.3390/brainsci10050309
  28. Salter M.W., Stevens B. (2017) Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027. https://doi.org/10.1038/nm.4397
  29. Colonna M., Butovsky O. (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468. https://doi.org/10.1146/annurev-immunol-051116-052358
  30. Block M.L., Zecca L., Hong J.-S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69. https://doi.org/10.1038/nrn2038
  31. Dong H., Zhang X., Qian Y. (2014) Mast cells and neuroinflammation. Med. Sci. Monit. Basic Res. 20, 200–206. https://doi.org/10.12659/MSMBR.893093
  32. Pardo C.A., Vargas D.L., Zimmerman A.W. (2005) Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psychiatry. 17, 485–495. https://doi.org/10.1080/02646830500381930
  33. Жмуров В.А., Кручинин Е.В., Жмуров Д.В., Лебедев И.А., Пышнов А.С., Ахметьянов М.А., Кузнецов В.В., Козлов М.В., Мокин Е.А., Алекберов Р.И., Тяпкин А.В., Сметанин Е.И., Сейпилов А.А., Тарасов М.Ю. (2020) Молекулярные механизмы развития синаптического прунинга. Уральский медицинский журнал. 1(184), 58‒63. https://doi.org/10.25694/URMJ.2020.01.11.
  34. Sakai J. (2020) How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proc. Natl. Acad. Sci. USA. 117, 16096–16099. https://doi.org/10.1073/pnas.2010281117
  35. Eltokhi A., Janmaat I.E., Genedi M., Haarman B.C.M., Sommer I.E.C. (2020) Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. J. Neurosci. Res. 98, 1335–1369. https://doi.org/10.1002/jnr.24616
  36. Liu Y., Zhang D., Liu X. (2015) mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol. 34, 50–66. https://doi.org/10.3109/08830185.2014.933957
  37. Delgoffe G.M., Pollizzi K.N., Waickman A.T., Heikamp E., Meyers D.J., Horton M.R., Xiao B., Worley P.F., Powell J.D. (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303. https://doi.org/10.1038/ni.2005
  38. Ortiz-González X.R. (2021) Mitochondrial dysfunction: a common denominator in neurodevelopmental disorders? Dev. Neurosci. 43, 222–229. https://doi.org/10.1159/000517870
  39. Lenzi P., Ferese R., Biagioni F., Fulceri F., Busceti C.L., Falleni A., Gambardella S., Frati A., Fornai F. (2021) Rapamycin ameliorates defects in mitochondrial fission and mitophagy in glioblastoma cells. Int. J. Mol. Sci. 22, 5379. https://doi.org/10.3390/ijms22105379
  40. Thellung S., Corsaro A., Nizzari M., Barbieri F., Florio T. (2019) Autophagy activator drugs: a new opportunity in neuroprotection from misfolded protein toxicity. Int. J. Mol. Sci. 20, E901. https://doi.org/10.3390/ijms20040901
  41. Ehninger D., Han S., Shilyansky C., Zhou Y., Li W., Kwiatkowski D.J., Ramesh V., Silva A.J. (2008) Reversal of learning deficits in a Tsc2+/‒ mouse model of tuberous sclerosis. Nat. Med. 14, 843–848. https://doi.org/10.1038/nm1788
  42. Mizuguchi M., Ikeda H., Kagitani-Shimono K., Yoshinaga H., Suzuki Y., Aoki M., Endo M., Yonemura M., Kubota M. (2019) Everolimus for epilepsy and autism spectrum disorder in tuberous sclerosis complex: EXIST-3 substudy in Japan. Brain Dev. 41, 1–10. https://doi.org/10.1016/j.braindev.2018.07.003
  43. Overwater I.E., Rietman A.B., Mous S.E., Bindels-de Heus K., Rizopoulos D., Ten Hoopen L.W., van der Vaart T., Jansen F.E., Elgersma Y., Moll H.A., de Wit M.Y. (2019) A randomized controlled trial with everolimus for IQ and autism in tuberous sclerosis complex. Neurology. 93, e200–e209. https://doi.org/10.1212/WNL.0000000000007749
  44. Hu L.-Y., Shi X.-Y., Yang X.-F., Liu M.J., Zou L.P. (2021) Rapamycin/Sirolimus improves the behavior of an 8-year-old boy with nonsyndromic autism spectrum disorder. Am. J. Ther. 28, e608. https://doi.org/10.1097/MJT.0000000000001131
  45. Hwang S.-K., Lee J.-H., Yang J.-E., Lim C.S., Lee J.A., Lee Y.S., Lee K., Kaang B.K. (2016) Everolimus improves neuropsychiatric symptoms in a patient with tuberous sclerosis carrying a novel TSC2 mutation. Mol. Brain. 9, 56. https://doi.org/10.1186/s13041-016-0222-6
  46. Dean S.L., Singer H.S. (2017) Treatment of Sydenham’s chorea: a review of the current evidence. Tremor Other Hyperkinet. Mov. (N.Y.). 7, 456. https://doi.org/10.7916/D8W95GJ2
  47. Han W., Yu F., Cao J., Dong B., Guan W., Shi J. (2020) Valproic acid enhanced apoptosis by promoting autophagy via Akt/mTOR signaling in glioma. Cell Transplant. 29, 963689720981878. https://doi.org/10.1177/0963689720981878
  48. Weichhart T., Haidinger M., Katholnig K., Kopecky C., Poglitsch M., Lassnig C., Rosner M., Zlabinger G.J., Hengstschläger M., Müller M., Hörl W.H., Säemann M.D. (2011) Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells. Blood. 117, 4273–4283. https://doi.org/10.1182/blood-2010-09-310888
  49. Fu L., Wu W., Sun X., Zhang P. (2020) Glucocorticoids enhanced osteoclast autophagy through the PI3K/Akt/mTOR signaling pathway. Calcif. Tissue Int. 107, 60–71. https://doi.org/10.1007/s00223-020-00687-2
  50. Ramírez-Jarquín U.N., Shahani N., Pryor W., Usiello A., Subramaniam S. (2020) The mammalian target of rapamycin (mTOR) kinase mediates haloperidol-induced cataleptic behavior. Transl. Psychiatry. 10, 336. https://doi.org/10.1038/s41398-020-01014-x
  51. Das M., Karnam A., Stephen-Victor E., Gilardin L., Bhatt B., Kumar Sharma V., Rambabu N., Patil V., Lecerf M., Käsermann F., Bruneval P., Narayanaswamy Balaji K., Benveniste O., Kaveri S.V., Bayry J. (2020) Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy. Cell Death Dis. 11, 50. https://doi.org/10.1038/s41419-020-2249-y
  52. Menendez J.A., Joven J., Aragonès G., Barrajón-Catalán E., Beltrán-Debón R., Borrás-Linares I., Camps J., Corominas-Faja B., Cufí S., Fernández-Arroyo S, Garcia-Heredia A., Hernández-Aguilera A., Herranz-López M., Jiménez-Sánchez C., López-Bonet E., Lozano-Sánchez J., Luciano-Mateo F., Martin-Castillo B., Martin-Paredero V., Pérez-Sánchez A., Oliveras-Ferraros C., Riera-Borrull M., Rodríguez-Gallego E., Quirantes-Piné R., Rull A., Tomás-Menor L., Vazquez-Martin A., Alonso-Villaverde C., Micol V., Segura-Carretero A. (2013) Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil. Cell Cycle. 12, 555–578. https://doi.org/10.4161/cc.23756
  53. Chen Z., Zhang Y., Jia C., Wang Y., Lai P., Zhou X., Wang Y., Song Q., Lin J., Ren Z., Gao Q., Zhao Z., Zheng H., Wan Z., Gao T., Zhao A., Dai Y., Bai X. (2014) mTORC1/2 targeted by n-3 polyunsaturated fatty acids in the prevention of mammary tumorigenesis and tumor progression. Oncogene. 33, 4548–4557. https://doi.org/10.1038/onc.2013.402
  54. Liu J., Xu M., Zhao Y., Ao C., Wu Y., Chen Z., Wang B., Bai X., Li M., Hu W. (2016) n-3 polyunsaturated fatty acids abrogate mTORC1/2 signaling and inhibit adrenocortical carcinoma growth in vitro and in vivo. Oncol. Rep. 35, 3514–3522. https://doi.org/10.3892/or.2016.4720
  55. di Michele F., Siracusano A., Talamo A., Niolu C. (2018) N-acetyl cysteine and vitamin D supplementation in treatment resistant obsessive-compulsive disorder patients: a general review. Curr. Pharm. Des. 24, 1832–1838. https://doi.org/10.2174/1381612824666180417124919
  56. Nikoo M., Radnia H., Farokhnia M., Mohammadi M.R., Akhondzadeh S. (2015) N-acetylcysteine as an adjunctive therapy to risperidone for treatment of irritability in autism: a randomized, double-blind, placebo-controlled clinical trial of efficacy and safety. Clin. Neuropharmacol. 38, 11–17. https://doi.org/10.1097/WNF.0000000000000063
  57. Lai Z.-W., Hanczko R., Bonilla E., Caza T.N., Clair B., Bartos A., Miklossy G., Jimah J., Doherty E., Tily H., Francis L., Garcia R., Dawood M., Yu J., Ramos I., Coman I., Faraone S.V., Phillips P.E., Perl A. (2012) N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 64, 2937–2946. https://doi.org/10.1002/art.34502

补充文件

附件文件
动作
1. JATS XML
2.

下载 (259KB)
3.

下载 (239KB)

版权所有 © Е.А. Трифонова, А.А. Котлярова, А.В. Кочетов, 2023

##common.cookie##