About Immunological Studies in “Sirius” University

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This short report summarizes the results of recent immunological studies conducted at the new Sirius University of Science and Technology. The main area of work is dedicated to the study of the features of the post-vaccination immune response against SARS-CoV-2, as well as the search for potential agents to block that infection.

作者简介

I. Astrakhantseva

Sirius University of Science and Technology

Email: sergei.nedospasov@gmail.com
Russia, 354340, Krasnodarskiy region, Federal Territory Sirius

V. Krut’

Sirius University of Science and Technology

Email: sergei.nedospasov@gmail.com
Russia, 354340, Krasnodarskiy region, Federal Territory Sirius

S. Chuvpilo

Sirius University of Science and Technology

Email: sergei.nedospasov@gmail.com
Russia, 354340, Krasnodarskiy region, Federal Territory Sirius

D. Shevyrev

Sirius University of Science and Technology

Email: sergei.nedospasov@gmail.com
Russia, 354340, Krasnodarskiy region, Federal Territory Sirius

A. Shumeev

Sirius University of Science and Technology

Email: sergei.nedospasov@gmail.com
Russia, 354340, Krasnodarskiy region, Federal Territory Sirius

S. Rybtsov

Sirius University of Science and Technology

Email: sergei.nedospasov@gmail.com
Russia, 354340, Krasnodarskiy region, Federal Territory Sirius

S. Nedospasov

Sirius University of Science and Technology; Engelhardat Institute of Molecular Biology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sergei.nedospasov@gmail.com
Russia, 354340, Krasnodarskiy region, Federal Territory Sirius; Russia, 119991, Moscow

参考

  1. Kruglova N., Siniavin A., Gushchin V., Mazurov D. (2021) Different neutralization sensitivity of SARS-CoV-2 cell-to-cell and cell-free modes of infection to convalescent sera. Viruses. 13, 1133.
  2. Fliedl L., Kaisermayer C. (2011) Transient gene expression in HEK293 and Vero cells immobilised on microcarriers. J. Biotechnol. 153, 15–21.
  3. Joyce M.G., Wheatley A.K., Modjarrad K. (2020) Need for speed: from human SARS-CoV-2 samples to protective and efficacious antibodies in weeks. Cell. 182, 7–9.
  4. Круть В.Г., Астраханцева И.В., Чувпило С.А., Ефимов Г.А., Амбарян С.Г., Друцкая М.С., Недоспасов С.А. (2022) Антитела к N-концевому домену ангиотензин-конвертирующего фермента (АСЕ2) блокируют его взаимодействие с S белком вируса SARS-CoV-2. Доклады Российской академии наук. Науки о жизни. 502, 5–9.
  5. Круть В.Г., Чувпило С.А., Астраханцева И.В., Козловская Л.И., Ефимов Г.А., Круглов А.А., Друцкая М.С., Недоспасов С.А. (2022) Помогут ли пептиды остановить COVID-19? Биохимия. 87, 707–726.
  6. Curreli F., Victor S.M.B., Ahmed S., Drelich A., Tong X., Tseng C.K., Hillyer C.D., Debnath A.K. (2020) Stapled peptides based on human angiotensin-converting enzyme 2 (ACE2) potently inhibit SARS-CoV-2 infection in vitro. mBio. 11, e02451-20.
  7. Chen W.-H., Strych U., Hotez P.J., Bottazzi M.E. (2020) The SARS-CoV-2 vaccine pipeline: an overview. Curr. Trop. Med. Rep. 7, 61–64.
  8. Xia S., Zhang Y., Wang Y., Wang H., Yang Y., Gao G.F., Tan W., Wu G., Xu M., Lou Z., Huang W., Xu W., Huang B., Wang H., Wang W., Zhang W., Li N., Xie Z., Ding L., You W., Zhao Y., Yang X., Liu Y., Wang Q., Huang L., Yang Y., Xu G., Luo B., Wang W., Liu P., Guo W., Yang X. (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infec. Dis. 21, 39–51.
  9. Wu Z., Hu Y., Xu M., Chen Z., Yang W., Jiang Z., Li M., Jin H., Cui G., Chen P., Wang L., Zhao G., Ding Y., Zhao Y., Yin W. (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infec. Dis. 21, 803–812.
  10. Kozlovskaya L.I., Piniaeva A.N., Ignatyev G.M., Gordeychuk I.V., Volok V.P., Rogova Y.V., Shishova A.A., Kovpak A.A., Ivin Y.Yu., Antonova L.P., Mefyod K.M., Prokosheva L.S., Sibirkina A.S., Tarasova Y.Yu., Bayurova E.O., Gancharova O.S., Illarionova V.V., Glukhov G.S., Sokolova O.S., Shaitan K.V., Moysenovich A.M., Gulyaev S.A., Gulyaeva T.V., Moroz A.V., Gmyl L.V., Ipatova E.G., Kirpichnikov M.P., Egorov A.M., Siniugina A.A., Ishmukhametov A.A. (2021) Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (C-oviVac) in preclinical studies. Emerg. Microbes Infect. 10, 1790–1806.
  11. Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S., Kovyrshina A.V., Lubenets N.L., Grousova D.M., Erokhova A.S., Botikov A.G., Izhaeva F.M., Popova O., Ozharovskaya T.A., Esmagambetov I.B., Favorskaya I.A., Zrelkin D.I., Voronina D.V., Shcherbinin D.N., Semikhin A.S., Simakova Y.V., Tokarskaya E.A., Egorova D.A., Shmarov M.M., Nikitenko N.A., Gushchin V.A., Smolyarchuk E.A., Zyryanov S.K., Borisevich S.V., Naroditsky B.S., Gintsburg AL.; Gam-COVID-Vac Vaccine Trial Group. (2021) Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 397(10275), 671–681.
  12. Knoll M.D., Wonodi C. (2021) Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet. 397, 72–74.
  13. Stephenson K.E., Le Gars M., Sadoff J., de Groot A.M., Heerwegh D., Truyers C., Atyeo C., Loos C., Chandrashekar A., McMahan K., Tostanoski L.H., Yu J., Gebre M.S., Jacob-Dolan C., Li Z., Patel S., Peter L., Liu J., Borducchi E.N., Nkolola J.P., Souza M., Tan C.S., Zash R., Julg B., Nathavitharana R.R., Shapiro R.L., Azim A.A., Alonso C.D., Jaegle K., Ansel J.L., Kanjilal D.G., Guiney C.J., Bradshaw C., Tyler A., Makoni T., Yanosick K.E., Seaman M.S., Lauffenburger D.A., Alter G., Struyf F., Douoguih M., Van Hoof J., Schuitemaker H., Barouch D.H. (2021) Immunogenicity of the Ad26.COV2.S vaccine for COVID-19. JAMA. 325(15), 1535‒15445.
  14. Zhu F.C., Li Y.H., Guan X.H., Hou L.H., Wang W.J., Li J.X., Wu S.P., Wang B.S., Wang Z., Wang L., Jia S.Y., Jiang H.D., Wang L., Jiang T., Hu Y., Gou J.B., Xu S.B., Xu J.J., Wang X.W., Wang W., Chen W. (2020) Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 395(10240), 1845‒1854.
  15. Wang Z., Schmidt F., Weisblum Y., Muecksch F., Barnes C.O., Finkin S., Schaefer-Babajew D., Cipolla M., Gaebler C., Lieberman J.A., Oliveira T.Y., Yang Z., Abernathy M.E., Huey-Tubman K.E., Hurley A., Turroja M., West K.A., Gordon K., Millard K.G., Ramos V., Da Silva J., Xu J., Colbert R.A., Patel R., Dizon J., Unson-O’Brien C., Shimeliovich I., Gazumyan A., Caskey M., Bjorkman P.J., Casellas R., Hatziioannou T., Bieniasz P.D., Nussenzweig M.C. (2021) mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 592, 616–622.
  16. Coronavirus (COVID-19) Vaccinations. https://ourworldindata.org/covid-vaccinations
  17. Ryzhikov A.B., Ryzhikov E.A., Bogryantseva M.P., Danilenko E.D., Imatdinov I.R., Nechaeva E.A., Pyankov O.V., Pyankova O.G., Susloparov I.M., Taranov O.S., Gudymo A.S, Danilchenko N.V., Sleptsova E.S., Bodnev S.A., Onkhonova G.S., Petrov V.N., Moiseeva A.A., Torzhkova P.Yu., Pyankov S.A., Tregubchak T.V., Antonets D.V., Gavrilova E.V., Maksyutov R.A. (2021) Immunogenicity and protectivity of the peptide vaccine against SARS-CoV-2. Annals RAMS. 76, 5–19.
  18. Ryzhikov A.B., Ryzhikov E.A., Bogryantseva M.P., Usova S.V., Danilenko E.D., Nechaeva E.A., Pyankov O.V., Pyankova O.G., Gudymo A.S., Bodnev S.A., Onkhonova G.S., Sleptsova E.S., Kuzubov V.I., Ryndyuk N.N., Ginko Z.I., Petrov V.N., Moiseeva A.A., Torzhkova P.Yu., Pyankov S.A., Tregubchak T.V., Antonec D.V., Gavrilova E.V., Maksyutov R.A. (2021) A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (phase I–II). Russ. J. Inf. Immun. 11, 283–296.
  19. Kudriavtsev A.V., Vakhrusheva A.V., Novoseletsky V.N., Bozdaganyan M.E., Shaitan K.V., Kirpichnikov M.P., Sokolova O.S. (2022) Immune escape associated with RBD Omicron mutations and SARS-CoV-2 evolution dynamics. Viruses. 14, 1603.
  20. Rashedi R., Samieefar N., Masoumi N., Mohseni S., Rezaei N. (2022) COVID-19 vaccines mix-and-match: the concept, the efficacy and the doubts. J. Med. Virol. 94, 1294–1299.
  21. Ng K.W., Faulkner N., Finsterbusch K., Wu M., Harvey R., Hussain S., Greco M., Liu Y., Kjaer S., Swanton C., Gandhi S., Beale R., Gamblin S.J., Cherepanov P., McCauley J., Daniels R., Howell M., Arase H., Wack A., Bauer D.L.V., Kassiotis G. (2022) SARS-CoV-2 S2-targeted vaccination elicits broadly neutralizing antibodies. Sci. Transl. Med. 14, eabn3715.
  22. Claireaux M., Caniels T.G., de Gast M., Han J., Guerra D., Kerster G., van Schaik B.D.C., Jongejan A., Schriek A.I., Grobben M., Brouwer P.J.M., van der Straten K., Aldon Y., Capella-Pujol J., Snitselaar J.L., Olijhoek W., Aartse A., Brinkkemper M., Bontjer I, Burger J.A., Poniman M., Bijl T.P.L., Torres J.L., Copps J., Martin I.C., de Taeye S.W., de Bree G.J., Ward A.B., Sliepen K., van Kampen A.H.C., Moerland P.D., Sanders R.W., van Gils M.J. (2022) A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. Nat. Commun. 13, 4539.
  23. Zoufaly A., Poglitsch M., Aberle J.H., Hoepler W., Seitz T., Traugott M., Grieb A., Pawelka E., Laferl H., Wenisch C., Neuhold S., Haider D., Stiasny K., Bergthaler A., Puchhammer-Stoeckl E., Mirazimi A., Montserrat N., Zhang H., Slutsky A.S., Penninger J.M. (2020) Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir. Med. 8, 1154–1158.
  24. Bibilashvili R.Sh., Sidorova M.V., Dudkina U.S., Palkeeva M.E., Molokoedov A.S., Kozlovskaya L.I., Egorov A.M., Ishmukhametov A.A., Parfyonova Y.V. (2021) Peptide inhibitors of the interaction of the SARS-CoV-2 receptor-binding domain with the ACE2 cell receptor. Biomed. Khim. 67, 244–250 (in Russ.)
  25. Zhang G., Pomplun S., Loftis A.R., Tan X., Loas A. Pentelute B.L. (2020) Investigation of ACE2 N-terminal fragments binding to SARS-CoV-2 spike RBD. bioRxiv. 2020.03.19.999318. https://doi.org/10.1101/2020.03.19.999318
  26. Karoyan P., Vieillard V., Gómez-Morales L., Odile E., Guihot A., Luyt C.E., Denis A., Grondin P., Lequin O. (2021) Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection. Commun. Biol. 4, 197.
  27. Larue R.C., Xing E., Kenney A.D., Zhang Y., Tuazon J.A., Li J., Yount J.S., Li P.K., Sharma A. (2021) Rationally designed ACE2-derived peptides inhibit SARS-CoV-2. Bioconjug. Chem. 32, 215–223.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (89KB)
3.

下载 (117KB)
4.

下载 (117KB)
5.

下载 (114KB)
6.

下载 (85KB)
7.

下载 (420KB)
8.

下载 (264KB)
9.

下载 (136KB)

版权所有 © И.В. Астраханцева, В.Г. Круть, С.А. Чувпило, Д.В. Шевырев, А.Н. Шумеев, С.А. Рыбцов, С.А. Недоспасов, 2023

##common.cookie##