Современные подходы белковой инженерии к созданию ферментов с новыми каталитическими свойствами

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Аденин-ДНК-гликозилаза MutY – монофункциональный фермент, катализирующий гидролиз N-гликозидных связей с остатками аденина, расположенными в ДНК напротив остатков 8-оксогуанина. Проведен рациональный дизайн мутантных форм фермента с измененной каталитической активностью. Анализ структур мутантных форм MutY, рассчитанных методом молекулярной динамики, позволил сделать вывод, что некоторые мутантные формы MutY могут не только расщеплять N-гликозидную связь, но и обладают АР-лиазной активностью, как в случае бифункциональных ДНК-гликозилаз. Методом сайт-направленного мутагенеза получены мутантные формы MutY с заменами A120K или S124K и определена их каталитическая активность. Показано, что замена S120K приводит к появлению дополнительной АР-лиазной активности, в то время как замена A124K полностью инактивирует фермент.

Об авторах

Т. Е. Тюгашев

Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук

Email: nikita.kuznetsov@niboch.nsc.ru
Россия, 630090, Новосибирск

О. С. Федорова

Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук

Email: nikita.kuznetsov@niboch.nsc.ru
Россия, 630090, Новосибирск

Н. А. Кузнецов

Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук

Автор, ответственный за переписку.
Email: nikita.kuznetsov@niboch.nsc.ru
Россия, 630090, Новосибирск

Список литературы

  1. Vanella R., Kovacevic G., Doffini V., de Santaella J.F., Nash M.A. (2022) High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering. Chem. Commun. 58, 2455.
  2. Nikoomanzar A., Chim N., Yik E.J., Chaput J.C. (2020) Engineering polymerases for applications in synthetic biology. Q. Rev. Biophys. 53, 1–31.
  3. Siedhoffa N.E., Schwaneberg U., Davari M.D. (2020) Machine learning-assisted enzyme engineering. in Methods in Enzymology. 643, 281–315.
  4. Kuznetsov N.A., Fedorova O.S. (2020) Kinetic milestones of damage recognition by DNA glycosylases of the helix-hairpin-helix structural superfamily. Adv. Exp. Biol. Med. 1241, 1–18.
  5. Kuznetsova A.A., Fedorova O.S., Kuznetsov N.A. (2022) Structural and molecular kinetic features of activities of DNA polymerases. Int. J. Mol. Sci. 23, 6373.
  6. Yu H., Dalby P.A. (2020) A beginner’s guide to molecular dynamics simulations and the identification of cross-correlation networks for enzyme engineering. In: Methods in Enzymology. 643, 15–49.
  7. Bulygin A.A., Kuznetsova A.A., Vorobjev Y.N., Fedorova O.S., Kuznetsov N.A. (2020) The role of active-site plasticity in damaged-nucleotide recognition by human apurinic/apyrimidinic endonuclease APE1. Molecules. 25, 3940.
  8. Bulygin A.A., Fedorova O.S., Kuznetsov N.A. (2022) Insights into mechanisms of damage recognition and catalysis by APE1-like enzymes. Int. J. Mol. Sci. 23, 4361.
  9. Bowerman S., Wereszczynski J. (2016) Detecting allosteric networks using molecular dynamics simulation. Methods in Enzymology. 578, 429–447.
  10. Tekpinar M., Neron B., Delarue M. (2021) Extracting dynamical correlations and identifying key residues for allosteric communication in proteins by correlation plus. J. Chem. Inf. Model. 61, 4832–4838.
  11. Kladova O.A., Bazlekowa-Karaban M., Baconnais S., Piétrement O., Ishchenko A.A., Matkarimov B.T., Iakovlev D.A., Vasenko A., Fedorova O.S., Le Cam E., Tudek B., Kuznetsov N.A., Saparbaev M. (2018) The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation. DNA Repair (Amst). 64, 10–25.
  12. Kladova O.A., Alekseeva I.V., Saparbaev M., Fedorova O.S., Kuznetsov N.A. (2020) Modulation of the apurinic/apyrimidinic endonuclease activity of human APE1 and of its natural polymorphic variants by base excision repair proteins. Int. J. Mol. Sci. 21, 7174.
  13. Smith G.P., Petrenko V.A. (1997) Phage display. Chem. Rev. 97, 391–410.
  14. Ghadessy F., Ong J., Holliger P. (2001) Directed evolution of polymerase function by compartmentalized self-replication. Proc. Natl. Acad. Sci. USA. 98, 4552–4557.
  15. Choi J., Kim H.-S. (2020) Structure-guided rational design of the substrate specificity and catalytic activity of an enzyme. Methods in Enzymology. 643, 181–202.
  16. Au K.G., Cabrera M., Miller J.H., Modrich P. (1988) Escherichia coli MutY gene-product is required for specific A-G-]C.G mismatch correction. Proc. Natl. Acad. Sci. USA. 85, 9163–9166.
  17. Slupska M.M., Baikalov C., Luther W.M., Chiang J.-H., Wei Y.-F., Miller J.H. (1996) Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J. Bacteriol. 178, 3885–3892.
  18. Back J.H., Park J.H., Chung J.H., Kim D.S.H.L., Han Y.S. (2006) A distinct TthMutY bifunctional glycosylase that hydrolyzes not only adenine but also thymine opposite 8-oxoguanine in the hyperthermophilic bacterium, Thermus thermophilus. DNA Repair. 5, 894–903.
  19. Kunrath-Lima M., Repolês B.M., Alves C.L., Furtado C., Rajão M.A., Macedo A.M., Franco G.R., Pena S.D.J., Valenzuela L., Wisnovsky S., Kelley S.O., Galanti N., Cabrera G., Machado C.R. (2017) Characterization of Trypanosoma cruzi MutY DNA glycosylase ortholog and its role in oxidative stress response. Infect. Genet. Evol. 55, 332–342.
  20. Li X., Lu A.L. (2001) Molecular cloning and functional analysis of the MutY homolog of Deinococcus radiodurans. J. Bacteriol. 183, 6151–6158.
  21. Au K.G., Clark S., Miller J.H., Modrich P. (1989) Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs. Proc. Natl. Acad. Sci. USA. 86, 8877–8881.
  22. Bulychev N.V, Varaprasad C.V, Dorman G., Miller J.H., Eisenberg M., Grollman A.P., Johnson F. (1996) Substrate specificity of Escherichia coli MutY protein. Biochemistry. 35, 13147–13156.
  23. Lee S., Verdine G.L. (2009) Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase. Proc. Natl. Acad. Sci. USA. 106, 18497–18502.
  24. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197.
  25. Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 78(8), 1950–1958. doi: 1002/prot.22711
  26. Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C. (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins. 65, 712–725.
  27. Ivani I., Dans P.D., Noy A., Pérez A., Faustino I., Hospital A., Walther J., Andrio P., Goñi R., Balaceanu A., Portella G., Battistini F., Gelpi J.L., Gonzalez C., Vendruscolo M., Laughton C.A., Harris S.A., Case D.A., Orozco M. (2016) PARMBSC1: a refined force-field for DNA simulations. Nat. Methods. 13, 55–58.
  28. Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M. (2007) Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys. J. 92, 3817–3829.
  29. Cheng X., Kelso C., Hornak V., De Los Santos C., Grollman A.P., Simmerling C. (2005) Dynamic behavior of DNA base pairs containing 8-oxoguanine. J. Am. Chem. Soc. 127(40), 13906‒13918. https://doi.org/10.1021/ja052542s
  30. Smith D.M.A., Xiong Y., Straatsma T.P., Rosso K.M., Squier T.C. (2012) Force-field development and molecular dynamics of [NiFe] hydrogenase. J. Chem. Theory Comput. 8, 2103–2114.
  31. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926.
  32. Joung I.S., Cheatham T.E. (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 112, 9020–9041.
  33. Anandakrishnan R., Aguilar B., Onufriev A.V. (2012) H++ 3.0: automating PK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucl. Acids Res. 40, 537–541.
  34. Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindah E. (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX.https://doi.org/10.1016/j.softx.2015.06.001
  35. Berendsen H.J.C., Spoel D. van der, Drunen R. van (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56.
  36. Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. (1995) A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577.
  37. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. (1997) LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. .https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  38. Bussi G., Donadio D., Parrinello M. (2007) Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101.
  39. Fasman G.D. (1975) Handbook of Biochemistry and Molecular Biology / 3rd ed. Cleveland: CRC Press, p. 589.
  40. Тюгашев Т.Е., Кузнецова А.А., Кузнецов Н.А., Федорова О.С. (2017) Особенности взаимодействия аденин-ДНК-гликозилазы MutY из E. coli с ДНК-субстратами. Биоорган. химия. 43, 18–28.
  41. Gill S.C., von Hippel P.H. (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326.
  42. Guan Y., Manuel R.C., Arvai A.S., Parikh S.S., Mol C.D., Miller J.H., Lloyd R.S., Tainer J.A. (1998) MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nat. Struct. Biol. 5, 1058–1064.
  43. Zharkov D.O., Gilboa R., Yagil I., Kycia J.H., Gerchman S.E., Shoham G., Grollman A.P. (2000) Role for lysine 142 in the excision of adenine from A:G mispairs by MutY DNA glycosylase of Escherichia coli. Biochemistry. 39, 14768–14778.
  44. Fromme J.C., Banerjee A., Huang S.J., Verdine G.L. (2004) Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature. 427, 652–656.
  45. Wang L., Lee S.J., Verdine G.L. (2015) Structural basis for avoidance of promutagenic DNA repair by MutY adenine DNA glycosylase. J. Biol. Chem. 290, 17096–17105.
  46. Wang L., Chakravarthy S., Verdine G.L. (2017) Structural basis for the lesion-scanning mechanism of the MutY DNA glycosylase. J. Biol. Chem. 292(12), 5007‒5017. https://doi.org/10.1074/jbc.M116.757039
  47. Russelburg P.L. O′Shea M., Valerie L. Demir M., Knutsen K.R., Sehgal S.L., Cao S., David S.S., Horvath M.P. (2020) Structural basis for finding OG lesions and avoiding undamaged G by the DNA glycosylase MutY. ACS Chem. Biol. 15, 93–102.
  48. Luncsford P.J., Chang D.Y., Shi G., Bernstein J., Madabushi A., Patterson D.N., Lu A.L., Toth E. (2010) A structural hinge in eukaryotic MutY homologues mediates catalytic activity and Rad9-Rad1-Hus1 checkpoint complex interactions. J. Mol. Biol. 403, 351–370.
  49. Nakamura T., Okabe K., Hirayama S., Chirifu M., Ikemizu S., Morioka H., Nakabeppu Y., Yamagata Y. (2021) Structure of the mammalian adenine DNA glycosylase MUTYH: insights into the base excision repair pathway and cancer. Nucl. Acids Res. 49, 7154–7163.
  50. Kellie J.L., Wilson K.A., Wetmore S.D. (2013) Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine–DNA glycosylase. Biochemistry. 52, 8753–8765.
  51. Brunk E., Arey J.S., Rothlisberger U. (2012) Role of environment for catalysis of the DNA repair enzyme MutY. J. Am. Chem. Soc. 134, 8608–8616.
  52. McCann J.A., Berti P.J. (2008) Transition-state analysis of the DNA repair enzyme MutY. J. Am. Chem. Soc. 130, 5789–5797.
  53. Woods R.D., O′Shea V.L., Chu A., Cao S., Richards J.L., Horvath M.P., David S.S. (2016) Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases. Nucl. Acids Res. 44, 801–810.
  54. Porello S.L., Williams S.D., Kuhn H., Michaels M.L., David S.S. (1996) Specific recognition of substrate analogs by the DNA mismatch repair enzyme MutY. J. Am. Chem. Soc. 118, 10684–10692.
  55. Kaur R., Nikkel D.J., Wetmore S.D. (2020) Computational studies of DNA repair: insights into the function of monofunctional DNA glycosylases in the base excision repair pathway. WIREs Comput. Mol. Sci. 10, e1471.
  56. Ludwig D.L., MacInnes M.A., Takiguchi Y., Purtymun P.E., Henrie M., Flannery M., Meneses J., Pedersen R.A., Chen D.J. (1998) A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat. Res. 409(1), 17‒29. https://doi.org/10.1016/S0921-8777(98)00039-1
  57. Dalhus B., Forsbring M., Helle I.H., Vik E.S., Forstrom R.J., Backe P.H., Alseth I., Bjoras M. (2011) Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase. Structure. 19, 117–127.
  58. Sebera J., Hattori Y., Sato D., Reha D., Nencka R., Kohno T., Kojima C., Tanaka Y., Sychrovsky V. (2017) The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine. Nucl. Acid-s Res. 45(9), 5231‒5242. https://doi.org/10.1093/nar/gkx157
  59. Williams S.D., David S.S. (2000) A single engineered point mutation in the adenine glycosylase MutY confers bifunctional glycosylase/AP lyase activity. Biochemistry. 39, 10098–10109.

Дополнительные файлы


© Т.Е. Тюгашев, О.С. Федорова, Н.А. Кузнецов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах