The Profile of microRNA Expression in Diffuse Large B-Cell Lymphoma

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Non-Hodgkin’s lymphoma (NHL) is a heterogeneous group of cancers characterized by different pathogenesis and prognosis. The main methods for treating NHL are chemotherapy, immunochemotherapy, and radiation therapy; however, most of these cancers are known to be chemoresistant or return rapidly after the short chemotherapy-induced remission. Therefore, searching for alternative cytoreductive therapy options is quite relevant today. Aberrant microRNA (miRNA) expression is one of the mechanisms responsible for the emergence and progression of lymphoid malignancies. This study was aimed at identifying the miRNA expression profile in diagnostic biopsy specimens harvested from the lymph nodes affected by diffuse large B-cell lymphoma (DLBCL) and identifying miRNA markers, which can potentially be used to design a novel type of ta-rgeted anticancer drugs that would allow one to achieve maximum therapy personalization and increase its efficacy. The key study objects were histological specimens harvested from the lymph nodes by excisional d-iagnostic biopsy and treated using the conventional histomorphological formalin fixation methods. The study group consisted of patients with DLBCL (n = 52). The biopsy specimens harvested from patients with reactive lymphadenopathy (RL) (n = 40) constituted the control group. The miR-150 expression level was reduced over 12-fold (p = 3.6 × 10‒15) compared to that in the tissues of non-cancerous nodular masses. B-ioinformatic analysis revealed that miR-150 is involved in regulation of hematopoiesis and lymphopoiesis. The findings obtained in this study allow considering miR-150 a promising therapeutic target having a great potential for clinical applications.

Sobre autores

Yu. Veryaskina

Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences; Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: microrna@inbox.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

S. Titov

Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences; JSC Vector-Best

Email: microrna@inbox.ru
Russia, 630090, Novosibirsk; Russia, 630117, Novosibirsk

I. Kovynev

Novosibirsk State Medical University, Ministry of Health of the Russian Federation

Email: microrna@inbox.ru
Russia, 630091, Novosibirsk

S. Fyodorova

Novosibirsk State Medical University, Ministry of Health of the Russian Federation

Email: microrna@inbox.ru
Russia, 630091, Novosibirsk

Ya. Shebunyaeva

Novosibirsk State Medical University, Ministry of Health of the Russian Federation

Email: microrna@inbox.ru
Russia, 630091, Novosibirsk

O. Antonenko

Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences

Email: microrna@inbox.ru
Russia, 630090, Novosibirsk

T. Pospelova

Novosibirsk State Medical University, Ministry of Health of the Russian Federation

Email: microrna@inbox.ru
Russia, 630091, Novosibirsk

I. Zhimulev

Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences

Email: microrna@inbox.ru
Russia, 630090, Novosibirsk

Bibliografia

  1. Alaggio R., Amador C., Anagnostopoulos I., Attygalle A.D., Araujo I.B.O., Berti E., Bhagat G., Borges A.M., Boyer D., Calaminici M., Chadburn A., Chan J.K.C., Cheuk W., Chng W.J., Choi J.K., Chuang S.S., Coupland S.E., Czader M., Dave S.S., de Jong D., Du M.Q., Elenitoba-Johnson K.S., Ferry J., Geyer J., Gratzinger D., Guitart J., Gujral S., Harris M., Harrison C.J., Hartmann S., Hochhaus A., Jansen P.M., Karube K., Kempf W., Khoury J., Kimura H., Klapper W., Kovach A.E., Kumar S., Lazar A.J., Lazzi S., Leoncini L., Leung N., Leventaki V., Li X.Q., Lim M.S., Liu W.P., Louissaint A. Jr, Marcogliese A., Medeiros L.J., Michal M., Miranda R.N., Mitteldorf C., Montes-Moreno S., Morice W., Nardi V., Naresh K.N., Natkunam Y., Ng S.B., Oschlies I., Ott G., Parrens M., Pulitzer M., Rajkumar S.V., Rawstron A.C., Rech K., Rosenwald A., Said J., Sarkozy C., Sayed S., Saygin C., Schuh A., Sewell W., Siebert R., Sohani A.R., Tooze R., Traverse-Glehen A., Vega F., Vergier B., Wechalekar A.D., Wood B., Xerri L., Xiao W. (2022) The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 36, 1720–1748.
  2. Wang L., Qin W., Huo Y.J., Li X., Shi Q., Rasko J.E.J., Janin A., Zhao W.L. (2020) Advances in targeted therapy for malignant lymphoma. Signal Transduct. Target. Ther. 5(1), 15.
  3. Fuertes T., Ramiro A.R., de Yebenes V.G. (2020) miRNA-based therapies in B cell non-Hodgkin lymphoma. Trends Immunol. 41(10), 932‒947.
  4. Peng Y., Croce C.M. (2016) The role of microRNAs in human cancer. Signal Transduct. Target. Ther. 1, 15004.
  5. Su Y., Sun B., Lin X., Zhao X., Ji W., He M., Qian H., Song X., Yang J., Wang J., Chen J. (2016) Therapeutic strategy with artificially-designed i-lncRNA targeting multiple oncogenic microRNAs exhibits effective antitumor activity in diffuse large B-cell lymphoma. Oncotarget. 7(31), 49143‒49155.
  6. Due H., Schönherz A.A., Ryø L., Primo M.N., Jespersen D.S., Thomsen E.A., Roug A.S., Xiao M., Tan X., Pang Y., Young K.H., Bøgsted M., Mikkelsen J.G., Dybkær K. (2019) MicroRNA-155 controls vincristine sensitivity and predicts superior clinical outcome in diffuse large B-cell lymphoma. Blood Adv. 3(7), 1185‒1196.
  7. Yang J.M., Jang J.Y., Jeon Y.K., Paik J.H. (2018) Clinicopathologic implication of microRNA-197 in diffuse large B cell lymphoma. J. Transl. Med. 16(1), 162.
  8. Huang F., Jin Y., Wei Y. (2016) MicroRNA-187 induces diffuse large B-cell lymphoma cell apoptosis via targeting BCL6. Oncol. Lett. 11(4), 2845‒2850.
  9. Fan Q., Meng X., Liang H., Zhang H., Liu X., Li L., Li W., Sun W., Zhang H., Zen K., Zhang C.Y., Zhou Z., Chen X., Ba Y. (2016) miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma. Protein Cell. 7(12), 899‒912.
  10. Farina F.M., Inguscio A., Kunderfranco P., Cortesi A., Elia L., Quintavalle M. (2017) MicroRNA-26a/cyclin-dependent kinase 5 axis controls proliferation, apoptosis and in vivo tumor growth of diffuse large B-cell lymphoma cell lines. Cell Death Dis. 8(6), e2890.
  11. Yuan J., Zhang Q., Wu S., Yan S., Zhao R., Sun Y., Tian X., Zhou K. (2021) MiRNA-223-3p affects mantle cell lymphoma development by regulating the CHUK/NF-κB2 signaling pathway. OncoTargets Ther. 14, 1553‒1564.
  12. Tian Y.Y., Jia C.M., Li Y., Wang Y., Jiang L., Liu A.C. (2016) Restoration of microRNA-373 suppresses growth of human T-cell lymphoma cells by repressing CCND1. Eur. Rev. Med. Pharmacol. Sci. 20(21), 4435‒4444.
  13. Morales-Martinez M., Vega G.G., Neri N., Nambo M.J., Alvarado I., Cuadra I., Duran-Padilla M.A., Huerta-Yepez S., Vega M.I. (2020) MicroRNA-7 regulates migration and chemoresistance in non-Hodgkin lymphoma cells through regulation of KLF4 and YY1. Front. Oncol. 10, 588893.
  14. Wu S.J., Chen J., Wu B., Wang Y.J., Guo K.Y. (2018) MicroRNA-150 enhances radiosensitivity by inhibiting the AKT pathway in NK/T cell lymphoma. J. Exp. Clin. Cancer Res. 37, 18.
  15. Musilova K., Devan J., Cerna K., Seda V., Pavlasova G., Sharma S., Oppelt J., Pytlik R., Prochazka V., Prouzova Z., Trbusek M., Zlamalikova L., Liskova K., Kruzova L., Jarosova M., Mareckova A., Kornauth C., Simonitsch-Klupp I., Schiefer A.I., Merkel O., Mocikova H., Burda P., Machova Polakova K., Kren L., Mayer J., Zent C.S., Trneny M., Evans A.G., Janikova A., Mraz M. (2018) miR-150 downregulation contributes to the high-grade transformation of follicular lymphoma by upregulating FOXP1 levels. Blood. 132(22), 2389‒2400.
  16. Witten L., Slack F.J. (2020) miR-155 as a novel clinical target for hematological malignancies. Carcinogenesis. 41, 2–7.
  17. Chakraborty C., Sharma A.R., Sharma G., Lee S.S. (2020) Therapeutic advances of miRNAs: a preclinical and clinical update. J. Adv. Res. 28, 127‒138.
  18. Sebestyén E., Nagy Á., Marosvári D., Rajnai H., Kajtár B., Deák B., Matolcsy A., Brandner S., Storhoff J., Chen N., Bagó A.G., Bödör C., Reiniger L. (2022) Distinct miRN-A expression signatures of primary and secondary central nervous system lymphomas. J. Mol. Diagn. 24(3), 224‒240.
  19. Costé É., Rouleux-Bonnin F. (2020) The crucial choice of reference genes: identification of miR-191-5p for normalization of miRNAs expression in bone marrow mesenchymal stromal cell and HS27a/HS5 cell lines. Sci. Rep. 10(1), 17728.
  20. de Leeuw D.C., van den Ancker W., Denkers F., de Menezes R.X., Westers T.M., Ossenkoppele G.J., van de Loosdrecht A.A., Smit L. (2013) MicroRNA profiling can classify acute leukemias of ambiguous lineage as either acute myeloid leukemia or acute lymphoid leukemia. Clin. Cancer Res. 19, 2187–2196.
  21. Ragni E., Colombini A., De Luca P., Libonati F., Viganò M., Perucca Orfei C., Zagra L., de Girolamo L. (2021) miR-103a-3p and miR-22-5p are reliable reference genes in extracellular vesicles from cartilage, adipose tissue, and bone marrow cells. Front. Bioeng. Biotechnol. 9, 632440.
  22. Esmeray E., Küçük C. (2020) Genetic alterations in B cell lymphoma subtypes as potential biomarkers for noninvasive diagnosis, prognosis, therapy, and disease monitoring. Turk. J. Biol. 44(1), 1‒14.
  23. Souza O.F., Popi A.F. (2022) Role of microRNAs in B‑cell compartment: development, proliferation and hematological diseases. Biomedicines. 10(8), 2004.
  24. Koralov S.B., Muljo S.A., Galler G.R., Krek A., Chakraborty T., Kanellopoulou C., Jensen K., Cobb B.S., Merkenschlager M., Rajewsky N., Rajewsky K. (2008) Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell. 132(5), 860‒874.
  25. Веряскина Ю.А., Титов С.Е., Ковынев И.Б., Федорова С.С., Поспелова Т.И., Жимулёв И.Ф. (2021) микроРНК при миелодиспластическом синдроме. Acta Naturae. 13(2), 4‒15.
  26. Emmrich S., Rasche M., Schöning J., Reimer C., Keihani S., Maroz A., Xie Y., Li Z., Schambach A., Reinhardt D., Klusmann J.H. (2014) miR-99a/100~125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev. 28(8), 858‒874.
  27. Velu C.S., Baktula A.M., Grimes H.L. (2009) Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood. 113(19), 4720‒4728.
  28. Felli N., Fontana L., Pelosi E., Botta R., Bonci D., Facchiano F., Liuzzi F., Lulli V., Morsilli O., Santoro S., Valtieri M., Calin G.A., Liu C.G., Sorrentino A., Croce C.M., Peschle C. (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA. 102(50), 18081‒18086.
  29. Lee J.Y., Kim M., Heo H.R., Ha K.S., Han E.T., Park W.S., Yang S.R., Hong S.H. (2018) Inhibition of microRNA-221 and 222 enhances hematopoietic differentiation from human pluripotent stem cells via c-KIT upregulation. Mol. Cells. 41(11), 971‒978.
  30. Kurkewich J.L., Boucher A., Klopfenstein N., Baskar R., Kapur R., Dahl R. (2017) The Mirn23a and Mirn23b microRNA clusters are necessary for proper hematopoietic progenitor cell production and differentiation. Exp. Hematol. 59, 14‒29.
  31. Pelosi A., Careccia S., Lulli V., Romania P., Marziali G., Testa U., Lavorgna S., Lo-Coco F., Petti M.C., Calabretta B., Levrero M., Piaggio G., Rizzo M.G. (2013) miRNA let-7c promotes granulocytic differentiation in acute myeloid leukemia. Oncogene. 32(31), 3648‒3654.
  32. Zheng B., Xi Z., Liu R., Yin W., Sui Z., Ren B., Miller H., Gong Q., Liu C. (2018) The function of microRNAs in B-cell development, lymphoma, and their potential in clinical practice. Front. Immunol. 9, 936.
  33. Xiao C., Calado D.P., Galler G., Thai T.H., Patterson H.C., Wang J., Rajewsky N., Bender T.P., Rajewsky K. (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 131(1), 146‒159.
  34. Nakata Y., Shetzline S., Sakashita C., Kalota A., Rallapalli R., Rudnick S.I., Zhang Y., Emerson S.G., Gewirtz A.M. (2007) c-Myb contributes to G2/M cell cycle transition in human hematopoietic cells by direct regulation of cyclin B1 expression. Mol. Cell Biol. 27(6), 2048‒2058.
  35. Dzikiewicz-Krawczyk A., Kok K., Slezak-Prochazka I., Robertus J.L., Bruining J., Tayari M.M., Rutgers B., de Jong D., Koerts J., Seitz A., Li J., Tillema B., G-uikema J.E., Nolte I.M., Diepstra A., Visser L., Kluiver J., van den Berg A. (2017) ZDHHC11 and ZDHHC11B are critical novel components of the oncogenic MYC-miR-150-MYB network in Burkitt lymphoma. Leukemia. 31(6), 1470‒1473.
  36. Ziel-Swier L.J.Y.M., Liu Y., Seitz A., de Jong D., Koerts J., Rutgers B., Veenstra R., Razak F.R.A., Dzikiewicz-Krawczyk A., van den Berg A., Kluiver J. (2022) The role of the MYC/miR-150/MYB/ZDHHC11 network in Hodgkin lymphoma and diffuse large B-cell lymphoma. Genes (Basel). 13(2), 227.
  37. Wang M., Yang W., Li M., Li Y. (2014) Low expression of miR-150 in pediatric intestinal Burkitt lymphoma. Exp. Mol. Pathol. 96(2), 261‒266.
  38. Watanabe A., Tagawa H., Yamashita J., Teshima K., Nara M., Iwamoto K., Kume M., Kameoka Y., Takahashi N., Nakagawa T., Shimizu N., Sawada K. (2011) The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia. 25(8), 1324‒1334.
  39. Ghisi M., Corradin A., Basso K., Frasson C., Serafin V., Mukherjee S., Mussolin L., Ruggero K., Bonanno L., Guffanti A., De Bellis G., Gerosa G., Stellin G., D’Agostino D.M., Basso G., Bronte V., Indraccolo S., Amadori A., Zanovello P. (2011) Modulation of m-icroRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood. 117(26), 7053‒7062.
  40. Sang W., Sun C., Zhang C., Zhang D., Wang Y., Xu L., Zhang Z., Wei X., Pan B., Yan D., Zhu F., Yan Z., Cao J., Loughran T.P. Jr., Xu K. (2016) MicroRNA-150 negatively regulates the function of CD4+ T cells through AKT3/Bim signaling pathway. Cell Immunol. 306–307, 35‒40.
  41. Ito M., Teshima K., Ikeda S., Kitadate A., Watanabe A., Nara M., Yamashita J., Ohshima K., Sawada K., Tagawa H. (2014) MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6, in advanced cutaneous T-cell lymphoma. Blood. 123(10), 1499‒1511.
  42. Mraz M., Chen L., Rassenti L.Z., Ghia E.M., Li H., Jepsen K., Smith E.N., Messer K., Frazer K.A., Kipps T.J. (2014) miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood. 124(1), 84‒95.
  43. Wang X., Kan Y., Chen L., Ge P., Ding T., Zhai Q., Yu Y., Wang X., Zhao Z., Yang H., Liu X., Li L., Qiu L., Qian Z., Zhang H., Wang Y., Zhao H. (2020) miR-150 is a negative independent prognostic biomarker for primary gastrointestinal diffuse large B-cell lymphoma. Oncol. Lett. 19(5), 3487‒3494.
  44. Sun Z., Wang Y., Han X., Zhao X., Peng Y., Li Y., Peng M., Song J., Wu K., Sun S., Zhou W., Qi B., Zhou C., Chen H., An X., Liu J. (2015) miR-150 inhibits terminal erythroid proliferation and differentiation. Oncotarget. 6(40), 43033‒43047.
  45. Lu J., Guo S., Ebert B.L., Zhang H., Peng X., Bosco J., Pretz J., Schlanger R., Wang J.Y., Mak R.H., Dombkowski D.M., Preffer F.I., Scadden D.T., Golub T.R. (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell. 14(6), 843‒853.
  46. Apple C.G., Miller E.S., Kannan K.B., Stortz J.A., Loftus T.J., Lopez M.C., Parvataneni H.K., Patrick M., Hagen J.E., Baker H.V., Efron P.A., Mohr A.M. (2021) The role of bone marrow microRNA (miR) in erythropoietic dysfunction after severe trauma. Surgery. 169(5), 1206‒1212.
  47. Fayyad-Kazan H., Bitar N., Najar M., Lewalle P., Fayyad-Kazan M., Badran R., Hamade E., Daher A., Hussein N., ElDirani R., Berri F., Vanhamme L., Burny A., Martiat P., Rouas R., Badran B. (2013) Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J. Transl. Med. 11, 31.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (291KB)

Declaração de direitos autorais © Ю.А. Веряскина, С.Е. Титов, И.Б. Ковынев, С.С. Фёдорова, Я.Ю. Шебуняева, О.В. Антоненко, Т.И. Поспелова, И.Ф. Жимулёв, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies