Differential Expression of a Foreign Gene in Arabidopsis Mitochondria in organello

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Genetic transformation of higher eukaryotes mitochondria in vivo is one of the unresolved and important problems. For efficient expression of foreign genetic material in mitochondria, it is necessary to select regulatory elements that ensure a high level of transcription and transcript stability. This work is aimed at studying the effectiveness of regulatory elements of mitochondrial genes flanking exogenous DNA using the phenomenon of natural competence of plant mitochondria. For this purpose, genetic constructs carrying the GFP gene under the control of the promoter regions of the RRN26 or COX1 genes and one of the two 3'-untranslated regions (3'-UTR) of mitochondrial genes were imported into isolated Arabidopsis mitochondria, followed by transcription in organello. It was shown that the level of GFP expression under the control of promoters of the RRN26 or COX1 genes in organello correlates with the level of transcription of these genes observed in vivo. At the same time, the presence of the tRNAТrp sequence in the 3'-UTR leads to a higher level of the GFP transcript than the presence in this region of the 3'-UTR of the NAD4 gene containing the binding site of the MTSF1 protein. The results obtained open up prospects for creating a system for efficient transformation of the mitochondrial genome.

Авторлар туралы

V. Tarasenko

Siberian Institute of Plant Physiology and Biochemistry Siberian Branch, Russian Academy of Sciences

Email: bolotova_t.a@mail.ru
Russia, 664033, Irkutsk

T. Tarasenko

Siberian Institute of Plant Physiology and Biochemistry Siberian Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: bolotova_t.a@mail.ru
Russia, 664033, Irkutsk

I. Gorbenko

Siberian Institute of Plant Physiology and Biochemistry Siberian Branch, Russian Academy of Sciences

Email: bolotova_t.a@mail.ru
Russia, 664033, Irkutsk

Yu. Konstantinov

Siberian Institute of Plant Physiology and Biochemistry Siberian Branch, Russian Academy of Sciences

Email: bolotova_t.a@mail.ru
Russia, 664033, Irkutsk

M. Koulintchenko

Siberian Institute of Plant Physiology and Biochemistry Siberian Branch, Russian Academy of Sciences; Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences

Email: bolotova_t.a@mail.ru
Russia, 664033, Irkutsk; Russia, 420111, Kazan

Әдебиет тізімі

  1. Larosa V., Remacle C. (2013) Transformation of the mitochondrial genome. Int. J. Dev. Biol. 57, 659–665. https://doi.org/10.1387/ijdb.130230cr
  2. Remacle C., Larosa V., Salinas T., Hamel P., Subrahmanian N., Bonnefoy N., Kempken F. (2012) Transformation and nucleic acid delivery to mitochondria. In: Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration. 35. Eds Bock R., Knoop V. Dordrecht: Springer, https://doi.org/10.1007/978-94-007-2920-9_19
  3. Hammani K., Giegé P. (2014) RNA metabolism in plant mitochondria. Trends Plant Sci. 19, 380‒389. https://doi.org/10.1016/j.tplants.2013.12.008
  4. Константинов Ю.М., Дитриш А., Вебер-Лотфи Ф., Ибрагим Н., Клименко Е.С., Тарасенко В.И., Болотова Т.А., Кулинченко М.В. (2016) Импорт ДНК в митохондрии. Биохимия. 81, 1307–1321.
  5. Koulintchenko M., Temperley R.J., Mason P.A., Dietrich A., Lightowlers R.N. (2006) Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum. Mol. Genet. 15, 143–154.https://doi.org/10.1093/hmg/ddi435
  6. Tarasenko T.A., Klimenko E.S., Tarasenko V.I., Koulintchenko M.V., Dietrich A., Weber-Lotfi F., Konstantinov Y.M. (2021) Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms. Mitochondrion. 60, 43‒58. https://doi.org/10.1016/j.mito.2021.07.006
  7. Kühn K., Weihe A., Börner T. (2005) Multiple promoters are a common feature of mitochondrial genes in Arabidopsis. Nucl. Acids Res. 33, 337–346. https://doi.org/10.1093/nar/gki179
  8. Kühn K., Richter U., Meyer E., Delannoy E., de Longevialle A.F., O’Toole N., Börner T., Millar A., Small I., Whelan J. (2009) Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. Plant Cell. 21, 2762–2779. https://doi.org/10.1105/tpc.109.068536
  9. Moller I.M., Rasmusson A.G., Van Aken O. (2021) Plant mitochondria – past, present and future. Plant J. 108, 912–959. https://doi.org/10.1111/tpj.15495
  10. Holec S., Lange H., Kuhn K., Alioua M., Borner T., Gagliardi D. (2006) Relaxed transcription in Arabidopsis mitochondria is counterbalanced by RNA stability control mediated by polyadenylation and polynucleotide phosphorylase. Mol. Cell. Biol. 26, 2869–2876, https://doi.org/10.1128/MCB.26.7.2869-2876.2006
  11. Perrin R., Meyer E.H., Zaepfel M., Kim Y.J., Mache R., Grienenberger J.M., Gualberto J.M., Gagliardi D. (2004) Two exoribonucleases act sequentially to process mature 3′-ends of atp9 mRNAs in Arabidopsis mitochondria. J. Biol. Chem. 279, 25440–25446. https://doi.org/10.1074/jbc.M401182200
  12. Haïli N., Arnal N., Quadrado M., Amiar S., Tcherkez G., Dahan J., Briozzo P., Colas des Francs-Small C., Vrielynck N., Mireau H. (2013) The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria. Nucl. Acids Res. 41, 6650–6663. https://doi.org/10.1093/nar/gkt337
  13. Ruwe H., Wang G., Gusewski S., Schmitz-Linneweber C. (2016) Systematic analysis of plant mitochondrial and chloroplast small RNAs suggests organelle-specific mRNA stabilization mechanisms. Nucl. Acids Res. 44, 7406–7417. https://doi.org/10.1093/nar/gkw466
  14. Forner J., Weber B., Thuss S., Wildum S., Binder S. (2007) Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: T-elements contribute to 5′ and 3′‑end formation. Nucl. Acids Res. 35, 3676–3692. https://doi.org/10.1093/nar/gkm270
  15. MacIntosh G.C., Castandet B. (2020) Organellar and secretory ribonucleases: major players in plant RNA homeostasis. Plant Physiol. 183, 1438–1452. https://doi.org/10.1104/pp.20.00076
  16. Dombrowski S., Brennicke A., Binder S. (1997) 3′-Inverted repeats in plant mitochondrial mRNAs are processing signals rather than transcription terminators. EMBO J. 16, 5069–5076. https://doi.org/10.1093/emboj/16.16.5069
  17. Kuhn J., Tengler U., Binder S. (2001) Transcript lifetime is balanced between stabilizing stem-loop structures and degradation promoting polyadenylation in plant mitochondria. Mol. Cell. Biol. 21, 731–742. https://doi.org/10.1128/MCB.21.3.731-742.2001
  18. Wang C., Aubé F., Planchard N., Quadrado M., Dargel-Graffin C., Nogué F., Mireau H. (2017) The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3′ end of its 5′-half intron. Nucl. Acids Res. 45, 6119‒6134. https://doi.org/10.1093/nar/gkx162
  19. Wang C., Blondel L., Quadrado M., Dargel-Graffin C., Mireau H. (2022) Pentatricopeptide repeat protein M-ITOCHONDRIAL STABILITY FACTOR 3 ensures mitochondrial RNA stability and embryogenesis. Plant Physiol. 190, 669‒681. https://doi.org/10.1093/plphys/kiac309
  20. Koulintchenko M., Konstantinov Y., Dietrich A. (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J. 22, 1245–1254.https://doi.org/10.1093/emboj/cdg128
  21. Sweetlove L.J., Taylor N.L., Leaver C.J. (2007) Isolation of intact, functional mitochondria from the model plant Arabidopsis thaliana. Meth. Mol. Biol. 372, 125–136.https://doi.org/10.1007/978-1-59745-365-3_9
  22. Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.https://doi.org/10.1016/0003-2697(76)90527-3
  23. Douce R., Neuburger M. (1989) The uniqueness of plant mitochondria. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 371–414.https://doi.org/10.1146/annurev.pp.40.060189.002103
  24. Tarasenko T.A., Subota I.Yu., Tarasenko V. I., Konstantinov Y.M., Koulintchenko M.V. (2020) Plant mitochondrial subfractions have different ability to import DNA. Theor. Exp. Plant Physiol. 32, 5–18. https://doi.org/10.1007/s40626-020-00167-w
  25. Тарасенко Т.А., Тарасенко В.И., Кулинченко М.В., Клименко Е.С., Константинов Ю.М. (2019) Импорт ДНК в митохондрии растений: комплексный подход для изучения in organello и in vivo. Биохимия. 84, 1036–1048. https://doi.org/10.1134/S032097251907011X
  26. Farré J.C., Araya A. (2001) Gene expression in isolated plant mitochondria: high fidelity of transcription, splicing and editing of a transgene product in electroporated organelles Nucl. Acids Res. 29, 2484–2491. https://doi.org/10.1093/nar/29.12.2484
  27. Tarasenko V.I., Katyshev A.I., Yakovleva T.V., Garnik E.Y., Chernikova V.V., Konstantinov Y.M., Koulintchenko M.V. (2016) RPOTmp, an Arabidopsis RNA polymerase with dual targeting, plays an important role in mitochondria, but not in chloroplasts. J. Exp. Botany. 67, 5657–5669. https://doi.org/10.1093/jxb/erw327
  28. Kühn K., Bohne A.V., Liere K., Weihe A., Börner T. (2007) Arabidopsis phage-type RNA polymerases: accurate in vitro transcription of organellar genes. Plant Cell. 19, 959–971. https://doi.org/10.1105/tpc.106.046839
  29. Binder S., Hatzack F., Brennicke A. (1995) A novel pea mitochondrial in vitro transcription system recognizes homologous and heterologous mRNA and tRNA promoters. J. Biol. Chem. 270, 22182‒2218. https://doi.org/10.1074/jbc.270.38.22182
  30. Rovira A.G., Smith A.G. (2019) PPR proteins ‒ orchestrators of organelle RNA metabolism. Physiol. Plant. 166, 451‒459. https://doi.org/10.1111/ppl.12950
  31. Hanic-Joyce P.J., Gray M.W. (1991) Accurate transcription of a plant mitochondrial gene in vitro. Mol. Cell Biol. 11, 2035‒2039. https://doi.org/10.1128/mcb.11.4.2035-2039.1991
  32. Attardi G., Chomyn A., King M.P., Kruse B., Polosa P.L., Murdter N.N. (1990) Regulation of mitochondrial gene expression in mammalian cells. Biochem. Soc. Trans. 18, 509‒513. https://doi.org/10.1042/bst0180509
  33. Micol V., Fernández-Silva P., Attardi G. (1997) Functional analysis of in vivo and in organello footprinting of HeLa cell mitochondrial DNA in relationship to ATP and ethidium bromide effects on transcription. J. Biol. Chem. 272, 18896‒18904. https://doi.org/10.1074/jbc.272.30.18896
  34. Kotrys A.V., Szczesny R.J. (2019) Mitochondrial gene expression and beyond-novel aspects of cellular physiology. Cells. 9, 17. https://doi.org/10.3390/cells9010017
  35. Newton K.J., Winberg B., Yamato K., Lupold S., Stern D.B. (1995) Evidence for a novel mitochondrial promoter preceding the cox2 gene of perennial teosintes. EMBO J. 14, 585‒593. https://doi.org/10.1002/j.1460-2075.1995.tb07034.x
  36. Xiao S., Zang J., Pei Y., Liu J., Liu J., Song W., Shi Z., Su A., Zhao J., Chen H. (2020) Activation of mitochondrial orf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize. Mol. Plant. 13, 1270‒1283. https://doi.org/10.1016/j.molp.2020.07.002
  37. Тарасенко В.И., Субота И.Ю., Кобзев В.Ф., Константинов Ю.М. (2005) Выделение митохондриальных белков, специфично связывающихся с промоторной областью гена cox1 кукурузы. Мол. биология. 39(3), 394‒402.
  38. Rapp W.D., Stern D.B. (1992) A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene. EMBO J. 11, 1065‒1073. https://doi.org/10.1002/j.1460-2075.1992.tb05145.x

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (302KB)
3.

Жүктеу (145KB)
4.

Жүктеу (113KB)
5.

Жүктеу (112KB)

© В.И. Тарасенко, Т.А. Тарасенко, И.В. Горбенко, Ю.М. Константинов, М.В. Кулинченко, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>