Identification of Stigma-Specific Expression Fragment in the Promoter of the Soybean Chitinase Class I Gene

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The expression level of heterologous genes in transgenic plants serves as an important indicator of gene efficiency. The small number of currently known effective promoters, limits the possibilities in fine-tuning the expression of transgenes. We cloned and characterized a tissue-specific promoter fragment of the soybean chitinase class I gene (GmChi1). The GmChi1 promoter (GmChi1P) was cloned from Jungery soybean. The promoter sequence contains a number of putative cis-acting elements, including tissue-specific and stress-regulated motifs. By histochemical analysis, the GmChi1P-controlled β-glucuronidase (GUS) reporter enzyme activity was shown to be highest in the roots of transgenic Nicotiana tabacum cv. NC89 at the four-leaf sprout formation stage. Interestingly, the high GUS activity in transgenic tobacco roots was effectively suppressed by salicylic acid (SA) treatment. Deletion analysis of GmChi1P revealed that the sequences located between positions ‒719 and ‒382 contain key cis-elements responsible for the reporter uidA gene expression (encoding GUS) in leaves, roots, and wounds of Nicotiana tabacum. In addition, fluorometric analysis showed that the activity of the shortened ChiP(‒1292) to ChiP(‒719) promoters in the roots of transgenic tobacco was significantly suppressed by abscisic acid and completely suppressed by SA. The ChiP(‒382) promoter was also found to be expressed exclusively in the stigma of transgenic tobacco flowers. Using the GUS reporter enzyme, no staining was detected in other flower organs in transgenic Nicotiana tabacum, including sepals, petals, anthers, filaments, and ovaries, or in any vegetative tissues. The results indicate that the promoter fragment ChiP(‒382) can be used in tissue-specific regulation of gene expression and plant genetic engineering.

Авторлар туралы

C. Zhao

College of Life Sciences, Qingdao Agricultural University

Email: xuerengao@163.com
China, 266109 , Qingdao

H. Hou

College of Life Sciences, Qingdao Agricultural University

Email: xuerengao@163.com
China, 266109 , Qingdao

M. Xing

Ubrigene (Jinan) Biosciences Co., Ltd

Email: xuerengao@163.com
China, 250000, Jinan

R.-G. Xue

College of Life Sciences, Qingdao Agricultural University

Хат алмасуға жауапты Автор.
Email: xuerengao@163.com
China, 266109 , Qingdao

Әдебиет тізімі

  1. Li W., Yu D., Yu J., Zhu D., Zhao Q. (2018) Functional analysis of maize silk-specific ZmbZIP25 promoter. Int. J. Mol. Sci. 19, 822–835.
  2. Bowles D.J. (1990) Defense related proteins in higher plants. Annu. Rev. Biochem. 59, 873–907.
  3. Kenton P., Darby R.M., Shelley G., Draper J. (2000) A PR5 gene promoter from Asparagus officinalis (AoPR-T-L) is not induced by abiotic stress, but is activated around sites of pathogen challenge and salicylate in transgenic tobacco. Mol. Plant Pathol. 1, 367–378.
  4. Brown R.L., Kazan K., McGrath K.C., Maclean D.J., Manners J.M. (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol. 132, 1020–1032.
  5. Collinge D.B., Kragh K.M., Mikkelsen J.D., Rasmussen U., Vad K. (1993) Plant chitinases. Plant J. 3, 31–40.
  6. Sticken M.B., Graham L.S. (1994) Plant chitinases. Can. J. Bot. 72, 1057–1083.
  7. Cletus J., Balasubramanian V., Vashisht D., Sakthivel N. (2013) Transgenic expression of plant chitinases to enhance disease resistance. Biotechnol. Lett. 35, 1719–1732.
  8. Abd El-Rahman S.S., Mazen M.M., Mohamed H.I., Mahmoud N.M. (2012) Induction of defence related enzymes and phenolic compounds in lupin (Lupinus a-lbus L.) and their effects on host resistance against Fusari-um wilt. Eur. J. Plant Pathol. 134, 105–116.
  9. Acharya K., Chakraborty N., Dutta A.K., Sarkar S., Acharya R. (2011) Signaling role of nitric oxide in the induction of plant defense by exogenous application of abiotic inducers. Arch. Phytopath. Plant Protect. 44, 1501–1511.
  10. Arlorio M., Ludwig A., Boller T., Bonfante P. (1992) Inhibition of fungal growth by plant chitinases and β-1,3-glucanases. Protoplasma. 171, 34–43.
  11. Veluthakkal R., Dasgupta M.G. (2012) Isolation and characterization of pathogen defence-related class I chitinase from the actinorhizal tree Casuarina equisetifolia. For. Path. 42, 467–480.
  12. Yeboah N.A., Arahira M., Nong V.H., Zhang D., Kadokura K., Watanabe A., Fukazawa C. (1998) A class III acidic endochitinase is specifically expressed in the developing seeds of soybean (Glycine max [L.] Merr.). Plant Mol. Biol. 36, 407–415.
  13. Gijzen M., Kuflu K., Qutob D., Chernys J.T. (2001) A class I chitinase from soybean seed coat. J. Exp. Bot. 52, 2283–2289.
  14. Zhou G. (2017) Cloning and functional analysis of specific promoter p51408 in stigma exsertion of wild rice (Oryza rufipogan Griff.) from yuanjiang city. Southwest China J. Agricult. Sci. 11, 2393–2397.
  15. Yu L., Ma T., Zhang Y., Hu Y., Yu K., Chen Y., Ma H., Zhao J. (2017) Identification and analysis of the stigma and embryo sac-preferential/specific genes in rice pistils. BMC Plant Biology. 17, 60–81.
  16. Stein J.C., Dixit R., Nasrallah M.E., Nasrallah J.B. (1996) SRK, the stigma-specific S locus receptor kinase of Brassica, is targeted to the plasma membrane in transgenic tobacco. Plant Cell. 8, 429–445.
  17. Hackett R.M., Cadwallader G., Franklin F.C. (1996) Functional analysis of a Brassica oleracea SLR1 gene promoter. Plant Physiol. 112, 1601–1607.
  18. Alvim F.C., Carolino S.M., Cascardo J.C., Nunes C.C., Martinez C.A., Otoni W.C., Fontes E.P. (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol. 126, 1042–1054.
  19. Higo K., Ugawa Y., Iwamoto M., Korenaga T. (1999) Plant cis-acting regulatory DNA element (PLACE) database. Nucleic Acids Res. 27, 297–300.
  20. Jefferson R.A., Kavanagh T.A., Bevan M.W. (1987) GUS fusions:β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901−3907.
  21. Xu X., Chen C., Fan B., Chen Z. (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell. 18, 1310–1326.
  22. Nishiuchi T., Shinshi H., Suzuki K. (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem. 279, 55355–55361.
  23. Chen C., Chen Z. (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol. 129, 706–716.
  24. Zhang Z.L., Xie Z., Zou X., Casaretto J., Ho T.H., Shen Q.J. (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134, 1500–1513.
  25. Xie Z., Zhang Z.L., Zou X., Huang J., Ruas P., Thompson D., Shen Q.J. (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol. 137, 176–189.
  26. Urao T., Yamaguchi-Shinozaki K., Urao S., Shinozaki K. (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 5, 1529–1539.
  27. Solano R., Nieto C., Avila J., Canas L., Diaz I., Paz-Ares J. Dual. (1995) DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrid. EMBO J. 14, 1773–1784.
  28. Agarwal M., Hao Y., Kapoor A., Dong C.H., Fujii H., Zheng X., Zhu J.K. (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 281, 37636–37645.
  29. Hartmann U., Sagasser M., Mehrtens F., Stracke R., Weisshaar B. (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol. 57, 155–171.
  30. Park H.C., Kim M.L., Kang Y.H., Jeon J.M., Yoo J.H., Kim M.C., Park C.Y., Jeong J.C., Moon B.C., Lee J.H., Yoon H.W., Lee S.H., Chung W.S., Lim C.O., Lee S.Y., Hong J.C., Cho M.J. (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135, 2150–2161.
  31. Luo H., Song F., Goodman R.M., Zheng Z. (2005) Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol. (Stuttg). 7, 459–468.
  32. Nakashima K., Fujita Y., Katsura K., Maruyama K., Narusaka Y., Seki M. Shinozaki K., Yamaguchi-Shinozaki K. (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol. Biol. 60, 51–68.
  33. Simpson S.D., Nakashima K., Narusaka Y., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 33, 259–270.
  34. Fehlberg V., Vieweg M.F., Dohmann E.M., Hohnjec N., Puhler A., Perlick A.M., Kuster H. (2005) The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J. Exp. Bot. 56, 799–806
  35. Vieweg M.F., Frühling M., Quandt H.J., Heim U., Bäumlein H., Pühler A., Küster H., Perlick A.M. (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. MPMI. 17, 62–69.
  36. Kagaya Y., Ohmiya K., Hattori T. (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 27, 470–478.
  37. Gowik U., Burscheidt J., Akyildiz M., Schlue U., Koczor M., Streubel M., Westhoff P. (2004) cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell. 16, 1077–1090.
  38. Filichkin S.A., Leonard J.M., Monteros A., Liu P.P., Nonogaki H. (2004) A novel endo-β-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol. 134, 1080‒1087.
  39. Yanagisawa S. (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J. 21, 281–288.
  40. Niki T., Mitsuhara I., Seo S., Ohtsubo N., Ohashi Y. (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39, 500–507.
  41. Chen L., Jiang B., Wu C., Sun S., Hou W., Han T. (2014) GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. BMC Plant Biol. 14, 245–257.
  42. Lalonde B.A., Nasrallah M.E., Dwyer K.G., Chen C.H., Barlow B., Nasrallah J. (1989) A highly conserved Brussica gene with homology to the S-locus specific glycoprotein structural gene. Plant Cell. 1, 249–258.
  43. Ke L., Zheng T., Wu X., Chen J., Zhu S. (2007) Isolation and sequence analysis of the stigma-specific promoter from Brassica napus. J. Agricult. Biotechnol. 15, 257–262.

© C.M. Zhao, H. Hou, M.G. Xing, R.-G. Xue, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>