Association of the Level of Serum Prolactin and Polymorphic Variants of the GRIN2A, GPM3, GPM7 GENES in Patients with Schizophrenia Taking Conventional and Atypical Antipsychotics

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Dopamine, serotonin and glutamate systems are jointly involved in the pathogenesis and pharmacotherapy of schizophrenia. We formulated a hypothesis that polymorphic variants of the GRIN2A, GRM3, and GRM7 genes may be associated with the development of hyperprolactinemia in patients with schizophrenia taking conventional and atypical antipsychotics as basic treatment. 432 Caucasian patients diagnosed with schizophrenia were examined. DNA was isolated from peripheral blood leukocytes by the standard phenol-chloroform method. For pilot genotyping, 12 SNPs in the GRIN2A gene, 4 SNPs in the GRM3 gene, and 6 SNPs in the GRM7 gene were selected. Allelic variants of the studied polymorphisms were determined by real-time PCR. The level of prolactin was determined by enzyme immunoassay. Among persons taking conventional antipsychotics, there were statistically significant differences in the distribution of genotype and allele frequencies in groups of patients with normal and elevated prolactin levels for the GRIN2A rs9989388 and GRIN2A rs7192557 polymorphic variants, as well as differences in serum prolactin levels depending on the genotypes of the GRM7 rs3749380 polymorphic variant. Among persons taking atypical antipsychotics, statistically significant differences were found in the frequencies of genotypes and alleles of the GRM3 rs6465084 polymorphic variant. For the first time, an association of polymorphic variants of the GRIN2A, GRM3, and GRM7 genes with the development of hyperprolactinemia in patients with schizophrenia taking conventional and atypical antipsychotics has been established. They not only confirm the close connection of the dopaminergic, serotonergic, and glutamatergic systems in the development of schizophrenia, but also demonstrate the potential of taking into account the genetic component for its therapy.

Авторлар туралы

V. Tiguntsev

Mental Health Research of the Tomsk National Research Medical Center

Хат алмасуға жауапты Автор.
Email: cristall2009@live.ru
Russia, 634014 , Tomsk

V. Gerasimova

Mental Health Research of the Tomsk National Research Medical Center

Email: cristall2009@live.ru
Russia, 634014 , Tomsk

E. Kornetova

Mental Health Research of the Tomsk National Research Medical Center

Email: cristall2009@live.ru
Russia, 634014 , Tomsk

O. Fedorenko

Mental Health Research of the Tomsk National Research Medical Center

Email: cristall2009@live.ru
Russia, 634014 , Tomsk

A. Kornetov

Siberian State Medical University

Email: cristall2009@live.ru
Russia, 634050 , Tomsk

A. Goncharova

Mental Health Research of the Tomsk National Research Medical Center

Email: cristall2009@live.ru
Russia, 634014 , Tomsk

E. Poltavskaya

Mental Health Research of the Tomsk National Research Medical Center

Email: cristall2009@live.ru
Russia, 634014 , Tomsk

A. Boyko

Mental Health Research of the Tomsk National Research Medical Center

Email: cristall2009@live.ru
Russia, 634014 , Tomsk

Әдебиет тізімі

  1. McCutcheon R.A., Krystal J.H., Howes O.D. (2020) Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 19(1), 15–33. https://doi.org/10.1002/wps.20693
  2. Stahl S. (2018) Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectrums. 23(3), 187–191. https://doi.org/10.1017/S1092852918001013
  3. Гареева А.Э. (2019) Современный взгляд на нейробиологические гипотезы шизофрении. Журн. высшей нервной деятельности им. И.П. Павлова. 69(4), 437–455.https://doi.org/10.1134/S0044467719040038
  4. Schwartz T.L., Sachdeva S., Stahl S.M. (2012) Glutamate neurocircuitry: theoretical underpinnings in schizophrenia. Front. Pharmacol. 3, 195.
  5. Cadinu D., Grayson B., Podda G., Harte M.K., Doostdar N., Neill J.C. (2018) NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology. 142, 41–62. https://doi.org/10.1016/j.neuropharm.2017.11.045
  6. Adell A. (2020) Brain NMDA receptors in schizophrenia and depression. Biomolecules. 10(6), 947. https://doi.org/10.3390/biom10060947
  7. Javitt D.C., Jotkowitz A, Sircar R., Zukin S.R. (1987) Non-competitive regulation of phencyclidine/sigma-receptors by the N-methyl-D-aspartate receptor antagonist D-(–)-2-amino-5-phosphonovaleric acid. Neurosci. Lett. 78(2), 193–198. https://doi.org/10.1016/0304-3940(87)90632-x
  8. Fujigaki H., Mouri A., Yamamoto Y., Nabeshima T., Saito K. (2019) Linking phencyclidine intoxication to the tryptophan-kynurenine pathway: therapeutic implications for schizophrenia. Neurochem. Int. 125, 1–6. https://doi.org/10.1016/j.neuint.2019.02.001
  9. Shah U.H., González-Maeso J. (2019) Serotonin and glutamate interactions in preclinical schizophrenia models. ACS Chem. Neurosci. 10(7), 3068–3077. https://doi.org/10.1021/acschemneuro.9b00044
  10. Ibi D., de la Fuente Revenga M., Kezunovic N., Muguruza C., Saunders J.M., Gaitonde S.A., Moreno J.L., Ijaz M.K., Santosh V., Kozlenkov A., Holloway T., Seto J., García-Bea A., Kurita M., Mosley G.E., Jiang Y., Christoffel D.J., Callado L.F., Russo S.J., Dracheva S., López-Giménez J.F., Ge Y., Escalante C.R., Meana J.J., Akbarian S., Huntley G.W., González-Maeso J. (2017) Antipsychotic-induced Hdac2 transcription via NF-κB leads to synaptic and cognitive side effects. Nat. Neurosci. 20(9), 1247–1259. https://doi.org/10.1038/nn.4616
  11. Мосолов С.Н. (2018) Психозы дофаминовой гиперчувствительности на современном этапе антипсихотической фармакотерапии шизофрении: что нужно знать практикующему врачу. Современная терапия психических расстройств. 4, 41–49.
  12. Иванов М.В., Незнанов Н.Г., Костерин Д.Н. (2014) Антипсихотики. В: Рациональная фармакотерапия в психиатрической практике. Руководство для практикующих врачей. Сер. “Рациональная фармакотерапия”; под ред. Александровского Ю.А., Незнанова Н.Г. М.: Литтерра, 142–175.
  13. Mittal S., Prasad S., Ghosh A. (2018) Antipsychotic-induced hyperprolactinaemia: case studies and review. Postgrad. Med. J. 94(1110), 226–229. https://doi.org/10.1136/postgradmedj-2017-135221
  14. Jeong H., Lee M. (2013) Long-acting injectable antipsychotics in first-episode schizophrenia. Clin. Psychopharmacol. Neurosci. 11(1), 1–6.
  15. Горобец Л.Н., Буланов В.С., Литвинов А.В. (2016) Особенности формирования нейроэндокринных дисфункций у больных шизофренией в амбулаторной практике (натуралистическое исследование). Фарматека. S4, 41–45.
  16. Османова Д.З., Бойко А.С., Федоренко О.Ю., Пожидаев И.В., Фрейдин М.Б., Стегний В.Н., Корнетова Е.Г., Иванова С.А. (2018) Роль генов дофаминергической системы в развитии антипсихотик-индуцированной гиперпролактинемии у больных шизофренией. Психическое здоровье. 16(5), 25–27.
  17. Leucht S., Cipriani A., Spineli L., Mavridis D., Orey D., Richter F., Samara M., Barbui C., Engel R.R., Geddes J.R., Kissling W., Stapf M.P., Lässig B., Salanti G., Davis J.M. (2013) Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 382(9896), 951–962. https://doi.org/10.1016/S0140-6736(13)60733-3
  18. Meltzer H.Y., Elkis H., Vanover K., Weiner D.M., van Kammen D.P., Peters P., Hacksell U. (2012) Pimavanserin, a selective serotonin (5-HT)2A-inverse agonist, enhances the efficacy and safety of risperidone, 2 mg/day, but does not enhance efficacy of haloperidol, 2 mg/day: comparison with reference dose risperidone, 6 mg/day. Schizophr. Res. 141(2–3), 144–152. https://doi.org/10.1016/j.schres.2012.07.029
  19. Baldessarini R.J., Tarazi F.I. 2001. Drugs and the treatment of psychiatric disorders: antipsychotic and antimanic agents. In Goodman and Gilman’s the Pharmacological Basis of Therapeutics. 10th ed. Hardman J.G., Limbird L.E., Gilman A.G., Eds. New York: McGraw-Hill Press, 485–528.
  20. Uno Y., Coyle J.T. (2019) Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 73(5), 204–215. https://doi.org/10.1111/pcn.12823
  21. Egerton A., Grace A.A., Stone J., Bossong M.G., Sand M., McGuire P. (2020) Glutamate in schizophrenia: neurodevelopmental perspectives and drug development. Schizophr. Res. 223, 59–70. https://doi.org/10.1016/j.schres.2020.09.013
  22. ay S.R., Fiszbein A., Opler L.A. (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13(2), 261–276
  23. Sambrook J., Fritsch E.R., Maniatis T. (1989) Molecular cloning: a laboratory manual 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press.
  24. Bakker P.R., Al Hadithy A.F., Amin N., van Duijn C.M., van Os J., van Harten P.N. (2012) Antipsychotic-induced movement disorders in long-stay psychiatric patients and 45 tag SNPs in 7 candidate genes: a prospective study. PLoS One. 7(12), e50970. https://doi.org/10.1371/journal.pone.0050970
  25. Liang W., Yu H., Su Y., Lu T., Yan H., Yue W., Zhang D. (2020) Variants of GRM7 as risk factor and response to antipsychotic therapy in schizophrenia. Transl. Psychiatry. 10(1), 83. https://doi.org/10.1038/s41398-020-0763-4
  26. Yang X., Wang G., Wang Y., Yue X. (2015) Association of metabotropic glutamate receptor 3 gene polymorphisms with schizophrenia risk: evidence from a meta-analysis. Neuropsychiatr. Dis. Treat. 11, 823–833. https://doi.org/10.2147/NDT.S77966
  27. Peuskens J., Pani L., Detraux J., De Hert M. (2014) The effects of novel and newly approved antipsychotics on serum prolactin levels: a comprehensive review. CNS Drugs. 28(5), 421–453.
  28. Patil S.T., Zhang L., Martenyi F., Lowe S.L., Jackson K.A., Andreev B.V., Avedisova A.S., Bardenstein L.M., Gurovich I.Y., Morozova M.A., Mosolov S.N., Neznanov N.G., Reznik A.M., Smulevich A.B., Tochilov V.A., Johnson B.G., Monn J.A., Schoepp D.D. (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat. Med. 13, 1102–1107.
  29. Mössner R., Schuhmacher A., Schulze-Rauschenbach S., Kühn K.U., Rujescu D., Rietschel M., Zobel A., Franke P., Wölwer W., Gaebel W., Häfner H., Wagner M., Maier W. (2008) Further evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. Eur. Neuropsychopharmacol. 18(10), 768–772. https://doi.org/10.1016/j.euroneuro.2008.05.007
  30. Norton N., Williams H.J., Dwyer S., Ivanov D., Preece A.C., Gerrish A., Williams N.M., Yerassimou P., Zammit S., O’Donovan M.C., Owen M.J. (2005) No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatry. 5, 23. https://doi.org/10.1186/1471-244X-5-23
  31. Tochigi M., Suga M., Ohashi J., Otowa T., Yamasue H., Kasai K., Kato T., Okazaki Y., Kato N., Sasaki T. (2006) No association between the metabotropic glutamate receptor type 3 gene (GRM3) and schizophrenia in a Japanese population. Schizophr. Res. 88(1–3), 260–264. https://doi.org/10.1016/j.schres.2006.07.008
  32. Chaumette B., Sengupta S.M., Lepage M., Malla A., Iyer S.N., Kebir O.; ICAAR study group, Dion P.A., Rouleau G.A., Krebs M.O., Shah J.L, Joober R. (2020) A polymorphism in the glutamate metabotropic receptor 7 is associated with cognitive deficits in the early phases of psychosis. Schizophr. Res. S0920-9964(20), 30371–30376. https://doi.org/10.1016/j.schres.2020.06.019
  33. Poltavskaya E.G., Fedorenko O.Y., Kornetova E.G., Loonen A.J.M., Kornetov A.N., Bokhan N.A., Ivanova S.A. (2021) Study of early onset schizophrenia: associations of GRIN2A and GRIN2B polymorphisms. Life (Basel). 11(10), 997. https://doi.org/10.3390/life11100997
  34. Корнетова Е.Г., Иванова С.А., Тигунцев В.В., Бойко А.С., Лобачёва О.А., Корнетов А.Н., Семке А.В. (2019) Антипсихотик-индуцированная гиперпролактинемия у больных шизофренией: социальные, клинические, иммунологические и терапевтические особенности. Томск: Интегральный Переплет.
  35. Янковская А.Г. (2017) Уровень пролактина у женщин с шизофренией на ранних этапах заболевания в условиях психофармакотерапии. Журн. гродненского гос. мед. университета. 15(4), 437–441.
  36. Mittal S., Prasad S., Ghosh A. (2017) Antipsychotic-induced hyperprolactinaemia: case studies and review. Postgrad. Med. J. 0, 1–4. https://doi.org/10.1136/postgradmedj-2017-135221

© В.В. Тигунцев, В.И. Герасимова, Е.Г. Корнетова, О.Ю. Федоренко, А.Н. Корнетов, А.А. Гончарова, Е.Г. Полтавская, А.С. Бойко, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>