CryoEM Investigation of Three-Dimentional Structure of the Stx-Converting Bacteriophage ϕ24B

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A modified method for culturing, concentrating, and purifying phage ϕ24B preparations was developed. In particular, a new lysogenic phage-producing strain lacking flagella was used, induction conditions were optimized, and purification in a sucrose gradient and concentration by deposition on a Freon 113 cushion were used. Using this method, a preparation of the Stx-converting bacteriophage ϕ24B was obtained, which was suitable for direct analysis by the cryoEM method. Based on cryoEM data for this phage, the first primary three-dimensional reconstruction of its virions was performed. The structure of the phage ϕ24B tail is described. It was shown that the adsorption apparatus of this virus is represented by six thin lateral fibrils and an axial fibril located at the end of the tail. This arrangement of the tail structure is consistent with the previously proposed hypothesis based on analysis of the receptor binding proteins (RBPs) of this bacteriophage.

全文:

受限制的访问

作者简介

A. Kuznetsov

Research Center of Biotechnology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: alexbluesking@gmail.com
俄罗斯联邦, Moscow

A. Moiseenko

Lomonosov Moscow State University

Email: alexbluesking@gmail.com
俄罗斯联邦, Moscow

E. Kulikov

Research Center of Biotechnology, Russian Academy of Sciences

Email: alexbluesking@gmail.com
俄罗斯联邦, Moscow

A. Letarov

Research Center of Biotechnology, Russian Academy of Sciences; Lomonosov Moscow State University

Email: alexbluesking@gmail.com
俄罗斯联邦, Moscow; Moscow

参考

  1. Allison H. E., Sergeant M. J., James C. E., Saunders J. R., Smith D. L., Sharp R. J., Marks T. S., McCarthy A. J. Immunity profiles of wild-type and recombinant shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens // Infect. Immun. 2003. V. 71. P. 3409‒3418.
  2. Blake K. S., Choi J., Dantas G. Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria // Cell. Mol. Life Sci. 2021. V. 78. P. 2585‒2606.
  3. Callaway T. R., Carr M. A., Edrington T. S., Anderson R. C., Nisbet D. J. Diet, Escherichia coli O157:H7, and cattle: a review after 10 years // Curr. Iss. Mol. Biol. 2009. V. 11. P. 67‒79.
  4. de Oliveira G. A., Silva J. L. Cryo-EM to visualize the structural organization of viruses // Curr. Opin. Virol. 2021. V. 49. P. 86‒91.
  5. Freedman S. B., Xie J., Neufeld M. S., Hamilton W. L., Hartling L., Tarr P. I., Alberta Provincial Pediatric Enteric Infection T., Nettel-Aguirre A., Chuck A., Lee B., Johnson D., Currie G., Talbot J., Jiang J., Dickinson J., Kellner J., MacDonald J., Svenson L., Chui L., Louie M., Lavoie M., Eltorki M., Vanderkooi O., Tellier R., Ali S., Drews S., Graham T., Pang X. L. Shiga toxin-producing Escherichia coli infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis // Clin. Infect. Dis. 2016. V. 62. P. 1251‒1258.
  6. Golomidova A. K., Efimov A. D., Kulikov E. E., Kuznetsov A. S., Belalov I. S., Letarov A. V. O antigen restricts lysogenization of non-O157 Escherichia coli strains by Stx-converting bacteriophage phi24B // Sci Rep. 2021. V. 11. Art. 3035.
  7. Kulikov E. E., Golomidova A. K., Prokhorov N. S., Ivanov P. A., Letarov A. V. High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies // Sci. Rep. 2019. V. 9. Art. 2958.
  8. Llarena A. K., Aspholm M., O’Sullivan K., Wegrzyn G., Lindback T. Replication region analysis reveals non-lambdoid Shiga toxin converting bacteriophages // Front. Microbiol. 2021. V. 12. Art. 640945.
  9. Mathieu A., Dion M., Deng L., Tremblay D., Moncaut E., Shah S. A., Stokholm J., Krogfelt K. A., Schjorring S., Bisgaard H., Nielsen D. S., Moineau S., Petit M. A. Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages // Nat. Commun. 2020. V. 11. Art. 378.
  10. Muniesa M., Serra-Moreno R., Jofre J. Free Shiga toxin bacteriophages isolated from sewage showed diversity although the stx genes appeared conserved // Environ. Microbiol. 2004. V. 6. P. 716‒725.
  11. Riley L. W. Pandemic lineages of extraintestinal pathogenic Escherichia coli // Clin. Microbiol. Infect. 2014. V. 20. P. 380‒390.
  12. Rollauer S. E., Sooreshjani M. A., Noinaj N., Buchanan S. K. Outer membrane protein biogenesis in Gram-negative bacteria // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015. V. 370. Art. 1679.
  13. Sausset R., Petit M. A., Gaboriau-Routhiau V., De Paepe M. New insights into intestinal phages // Mucosal Immunol. 2020. V. 13. P. 205‒215.
  14. Smith D. L., James C. E., Sergeant M. J., Yaxian Y., Saunders J. R., McCarthy A.J., Allison H. E. Short-tailed stx phages exploit the conserved YaeT protein to disseminate Shiga toxin genes among enterobacteria // J. Bacteriol. 2007. V. 189. P. 7223‒7233.
  15. Smith D. L., Rooks D. J., Fogg P. C., Darby A. C., Thomson N. R., McCarthy A.J., Allison H. E. Comparative genomics of Shiga toxin encoding bacteriophages // BMC Genomics. 2012. V. 13. Art. 311.
  16. Todd E. C.D. Preliminary estimates of costs of foodborne disease in Canada and costs to reduce salmonellosis // J. Food Prot. 1989. V. 52. P. 586‒594.
  17. Trachtman H., Austin C., Lewinski M., Stahl R. A. Renal and neurological involvement in typical Shiga toxin-associated HUS // Nat. Rev. Nephrol. 2012. V. 8. P. 658‒669.
  18. Zhang J. T., Yang F., Du K., Li W. F., Chen Y., Jiang Y. L., Li Q., Zhou C. Z. Structure and assembly pattern of a freshwater short-tailed cyanophage Pam1 // Structure. 2022. V. 30. P. 240‒251. e244.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structural features of bacteriophage ϕ24B: a - SEM image of virions; b - three-dimensional reconstruction of the whole virion; c - three-dimensional reconstruction of the tail (the colour gradient from red to blue reflects the distance from the central axis of the tail)

下载 (587KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##