CryoEM Investigation of Three-Dimentional Structure of the Stx-Converting Bacteriophage ϕ24B

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A modified method for culturing, concentrating, and purifying phage ϕ24B preparations was developed. In particular, a new lysogenic phage-producing strain lacking flagella was used, induction conditions were optimized, and purification in a sucrose gradient and concentration by deposition on a Freon 113 cushion were used. Using this method, a preparation of the Stx-converting bacteriophage ϕ24B was obtained, which was suitable for direct analysis by the cryoEM method. Based on cryoEM data for this phage, the first primary three-dimensional reconstruction of its virions was performed. The structure of the phage ϕ24B tail is described. It was shown that the adsorption apparatus of this virus is represented by six thin lateral fibrils and an axial fibril located at the end of the tail. This arrangement of the tail structure is consistent with the previously proposed hypothesis based on analysis of the receptor binding proteins (RBPs) of this bacteriophage.

Full Text

Restricted Access

About the authors

A. S. Kuznetsov

Research Center of Biotechnology, Russian Academy of Sciences

Author for correspondence.
Email: alexbluesking@gmail.com
Russian Federation, Moscow

A. V. Moiseenko

Lomonosov Moscow State University

Email: alexbluesking@gmail.com
Russian Federation, Moscow

E. E. Kulikov

Research Center of Biotechnology, Russian Academy of Sciences

Email: alexbluesking@gmail.com
Russian Federation, Moscow

A. V. Letarov

Research Center of Biotechnology, Russian Academy of Sciences; Lomonosov Moscow State University

Email: alexbluesking@gmail.com
Russian Federation, Moscow; Moscow

References

  1. Allison H. E., Sergeant M. J., James C. E., Saunders J. R., Smith D. L., Sharp R. J., Marks T. S., McCarthy A. J. Immunity profiles of wild-type and recombinant shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens // Infect. Immun. 2003. V. 71. P. 3409‒3418.
  2. Blake K. S., Choi J., Dantas G. Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria // Cell. Mol. Life Sci. 2021. V. 78. P. 2585‒2606.
  3. Callaway T. R., Carr M. A., Edrington T. S., Anderson R. C., Nisbet D. J. Diet, Escherichia coli O157:H7, and cattle: a review after 10 years // Curr. Iss. Mol. Biol. 2009. V. 11. P. 67‒79.
  4. de Oliveira G. A., Silva J. L. Cryo-EM to visualize the structural organization of viruses // Curr. Opin. Virol. 2021. V. 49. P. 86‒91.
  5. Freedman S. B., Xie J., Neufeld M. S., Hamilton W. L., Hartling L., Tarr P. I., Alberta Provincial Pediatric Enteric Infection T., Nettel-Aguirre A., Chuck A., Lee B., Johnson D., Currie G., Talbot J., Jiang J., Dickinson J., Kellner J., MacDonald J., Svenson L., Chui L., Louie M., Lavoie M., Eltorki M., Vanderkooi O., Tellier R., Ali S., Drews S., Graham T., Pang X. L. Shiga toxin-producing Escherichia coli infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis // Clin. Infect. Dis. 2016. V. 62. P. 1251‒1258.
  6. Golomidova A. K., Efimov A. D., Kulikov E. E., Kuznetsov A. S., Belalov I. S., Letarov A. V. O antigen restricts lysogenization of non-O157 Escherichia coli strains by Stx-converting bacteriophage phi24B // Sci Rep. 2021. V. 11. Art. 3035.
  7. Kulikov E. E., Golomidova A. K., Prokhorov N. S., Ivanov P. A., Letarov A. V. High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies // Sci. Rep. 2019. V. 9. Art. 2958.
  8. Llarena A. K., Aspholm M., O’Sullivan K., Wegrzyn G., Lindback T. Replication region analysis reveals non-lambdoid Shiga toxin converting bacteriophages // Front. Microbiol. 2021. V. 12. Art. 640945.
  9. Mathieu A., Dion M., Deng L., Tremblay D., Moncaut E., Shah S. A., Stokholm J., Krogfelt K. A., Schjorring S., Bisgaard H., Nielsen D. S., Moineau S., Petit M. A. Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages // Nat. Commun. 2020. V. 11. Art. 378.
  10. Muniesa M., Serra-Moreno R., Jofre J. Free Shiga toxin bacteriophages isolated from sewage showed diversity although the stx genes appeared conserved // Environ. Microbiol. 2004. V. 6. P. 716‒725.
  11. Riley L. W. Pandemic lineages of extraintestinal pathogenic Escherichia coli // Clin. Microbiol. Infect. 2014. V. 20. P. 380‒390.
  12. Rollauer S. E., Sooreshjani M. A., Noinaj N., Buchanan S. K. Outer membrane protein biogenesis in Gram-negative bacteria // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015. V. 370. Art. 1679.
  13. Sausset R., Petit M. A., Gaboriau-Routhiau V., De Paepe M. New insights into intestinal phages // Mucosal Immunol. 2020. V. 13. P. 205‒215.
  14. Smith D. L., James C. E., Sergeant M. J., Yaxian Y., Saunders J. R., McCarthy A.J., Allison H. E. Short-tailed stx phages exploit the conserved YaeT protein to disseminate Shiga toxin genes among enterobacteria // J. Bacteriol. 2007. V. 189. P. 7223‒7233.
  15. Smith D. L., Rooks D. J., Fogg P. C., Darby A. C., Thomson N. R., McCarthy A.J., Allison H. E. Comparative genomics of Shiga toxin encoding bacteriophages // BMC Genomics. 2012. V. 13. Art. 311.
  16. Todd E. C.D. Preliminary estimates of costs of foodborne disease in Canada and costs to reduce salmonellosis // J. Food Prot. 1989. V. 52. P. 586‒594.
  17. Trachtman H., Austin C., Lewinski M., Stahl R. A. Renal and neurological involvement in typical Shiga toxin-associated HUS // Nat. Rev. Nephrol. 2012. V. 8. P. 658‒669.
  18. Zhang J. T., Yang F., Du K., Li W. F., Chen Y., Jiang Y. L., Li Q., Zhou C. Z. Structure and assembly pattern of a freshwater short-tailed cyanophage Pam1 // Structure. 2022. V. 30. P. 240‒251. e244.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural features of bacteriophage ϕ24B: a - SEM image of virions; b - three-dimensional reconstruction of the whole virion; c - three-dimensional reconstruction of the tail (the colour gradient from red to blue reflects the distance from the central axis of the tail)

Download (587KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies