Degradation of the Biofilms of Gram-Positive and Gram-Negative Bacteria by the PAPC Serine protease from Aspergillus ochraceus

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Infections associated with biofilm formation by gram-positive and gram-negative microorganisms cause difficulty in therapy and are prone to transition into chronic forms. Approaches to degradation of the biofilm matrix are therefore in demand. In the present work, recombinant recombinant PAPC serine protease from Aspergillus ochraceus caused the degradation of mature biofilms formed by a number of gram-positive and gram-negative bacteria by 15‒20% at 50 µg/mL. At 100 µg/mL, the biomass of S. aureus and P. aeruginosa biofilms decreased by 50%. Thus, the PAPC may be a promising agent for biofilm removal and enhance the efficiency of antimicrobial therapy.

全文:

受限制的访问

作者简介

D. Baidamshina

Kazan (Volga Region) Federal University

编辑信件的主要联系方式.
Email: dianabaidamshina@yandex.ru
俄罗斯联邦, Kazan, 420008

A. Rafia Nasr

Kazan (Volga Region) Federal University

Email: dianabaidamshina@yandex.ru
俄罗斯联邦, Kazan, 420008

S. Komarevtsev

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: dianabaidamshina@yandex.ru
俄罗斯联邦, Moscow, 117997

A. Osmolovskii

Moscow State Uniuversity

Email: dianabaidamshina@yandex.ru

Biological Faculty

俄罗斯联邦, Moscow, 1179974; Moscow, 119234

K. Miroshnikov

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Moscow State Uniuversity

Email: dianabaidamshina@yandex.ru

Biological Faculty

俄罗斯联邦, Moscow, 119234

A. Kayumov

Kazan (Volga Region) Federal University

Email: dianabaidamshina@yandex.ru
俄罗斯联邦, Kazan, 420008

E. Trizna

Kazan (Volga Region) Federal University

Email: dianabaidamshina@yandex.ru
俄罗斯联邦, Kazan, 420008

参考

  1. Algburi A., Comito N., Kashtanov D., Dicks L.M., Chikindas M.L. Control of biofilm formation: antibiotics and beyond // Appl. Environ. Microbiol. 2017. V. 83. Art. e02508-16.
  2. Baidamshina D.R., Trizna E.Y., Holyavka M.G., Bogachev M.I., Artyukhov V.G., Akhatova F.S., Rozhina E.V., Fakhrullin R.F., Kayumov A.R. Targeting microbial biofilms using Ficin, a nonspecific plant protease // Sci. Rep. 2017. V. 7. Art. 46068.
  3. Greer H.M., Overton K., Ferguson M.A., Spain E.M., Darling L.E., Núñez M.E., Volle C.B. Extracellular polymeric substance protects some cells in an Escherichia coli biofilm from the biomechanical consequences of treatment with magainin 2 // Microorganisms. 2021. V. 9. Art. 976.
  4. Kaplan J.B. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses // J. Dental Res. 2010. V. 89. P. 205‒218.
  5. Kaplan J.B., Mlynek K.D., Hettiarachchi H., Alamneh Y.A., Biggemann L., Zurawski D.V., Black C.C., Bane C.E., Kim R.K., Granick M.S. Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo // PLoS One. 2018. V. 13. Art. e0205526.
  6. Khan J., Tarar S.M., Gul I., Nawaz U., Arshad M. Challenges of antibiotic resistance biofilms and potential combating strategies: a review // 3 Biotech. 2021. V. 11. Art. 169.
  7. https://doi.org/10.1007/s13205-021-02707-w
  8. Khoramian B., Emaneini M., Bolourchi M., Niasari-Naslaji A., Gorganzadeh A., Abani S., Hovareshti P. Therapeutic effects of a combined antibiotic-enzyme treatment on subclinical mastitis in lactating dairy cows // Vet. Med. (Praha). 2016. V. 61. P. 237–242.
  9. Komarevtsev S.K., Evseev P.V., Shneider M.M., Popova E.A., Tupikin A.E., Stepanenko V.N., Kabilov M.R., Shabunin S.V., Osmolovskiy A.A., Miroshnikov K.A. Gene analysis, cloning, and heterologous expression of protease from a micromycete Aspergillus ochraceus capable of activating protein C of blood plasma // Microorganisms. 2021. V. 9. Art. 1936.
  10. Lahiri D., Nag M., Banerjee R., Mukherjee D., Garai S., Sarkar T., Dey A., Sheikh H.I., Pathak S.K., Edinur H.A., Pati S., Ray R.R. Amylases: biofilm inducer or biofilm inhibitor? // Front. Cell. Infect. Microbiol. 2021. V. 11. Art. 660048.
  11. Melchior M.B., Vaarkamp H., Fink-Gremmels J. Biofilms: a role in recurrent mastitis infections? // Veterinary J. 2006. V. 171. P. 398‒407.
  12. O’Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis // Mol. Microbiol. 1998. V. 28. P. 449‒461.
  13. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: a laboratory manual // Cold Spring Harbor Laboratory Press. 1989. V. 49. № 2. P. 411.
  14. Sauer K., Stoodley P., Goeres D.M., Hall-Stoodley L., Burmolle M., Stewart P.S., Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation // Nature Revs. Microbiol. 2022. V. 20. P. 608–620.
  15. Schwartz S.H. An overview of the Schwartz theory of basic values // Online readings in Psychology and Culture. 2012. V. 2. № 1. Art. 11.
  16. Taglialegna A., Lasa I., Valle J. Amyloid structures as biofilm matrix scaffolds // J. Bacteriol. 2016. V. 198. P. 2579‒2588.
  17. Usmani Y., Ahmed A., Faizi S., Versiani M.A., Shamshad S., Khan S., Simjee S.U. Antimicrobial and biofilm inhibiting potential of an amide derivative [N-(2’, 4’-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide] of ursolic acid by modulating membrane potential and quorum sensing against colistin resistant Acinetobacter baumannii // Microb. Pathog. 2021. V. 157. Art. 104997.
  18. Vuotto C., Donelli G. Novel treatment strategies for biofilm-based infections // Drugs. 2019. V. 79. P. 1635–1655.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Assessment of the destruction of the total volume of biofilms and the volume of the matrix of bacterial biofilms by PAPC protease. The color is crystalline purple and Congo red.

下载 (193KB)
3. Fig. 2. The effect of PAPC (100 mcg/ml) on the integrity of the biofilm and effectiveness against S. aureus, M. luteus, E. faecalis, E. coli, K. pneumoniae and P. aeruginosa cells in the composition of the formed biofilm. On micrographs, the scale mark corresponds to 5 microns, on Z-slices — 10 microns.

下载 (769KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##