Specific Response of Bacterial Cells to β-Ionone

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The biological activity and mechanisms of action of the unsaturated ketone β-ionone, a volatile compound of significantinterest for biotechnology, medicine, and agriculture, were studied. Using specific lux biosensors basedon Escherichia coli MG1655, we found that β-ionone causes oxidative stress in E. coli cells by inducing expression from the PkatG and Pdps promoters, but not from the PsoxS promoter. The effects of β-ionone on the heat shock induction (expression from the PibpA and PgrpE promoters) and on DNA damage (expression from the PcolD and PdinI promoters, SOS response) in E. coli cells were significantly weaker. β-Ionone did not cause oxidative stress in the cells of the gram-positive bacterium Bacillus subtilis.

全文:

受限制的访问

作者简介

D. Sidorova

Complex of NBICS Technologies of the NRC “Kurchatov Institute”

Email: plyutaba@gmail.com
俄罗斯联邦, Moscow, 123182

O. Melkina

Complex of NBICS Technologies of the NRC “Kurchatov Institute”

Email: plyutaba@gmail.com
俄罗斯联邦, Moscow, 123182

O. Koksharova

Complex of NBICS Technologies of the NRC “Kurchatov Institute”; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: plyutaba@gmail.com
俄罗斯联邦, Moscow, 123182; Moscow, 119991

E. Vagner

Complex of NBICS Technologies of the NRC “Kurchatov Institute”; Department of Biotechnology, Mendeleev University of Chemical Technology of Russia

Email: plyutaba@gmail.com
俄罗斯联邦, Moscow, 123182; Moscow 125047

I. Khmel

Complex of NBICS Technologies of the NRC “Kurchatov Institute”

Email: plyutaba@gmail.com
俄罗斯联邦, Moscow, 123182

V. Plyuta

Complex of NBICS Technologies of the NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: plyutaba@gmail.com
俄罗斯联邦, Moscow, 123182

参考

  1. Веселова М.А., Плюта В.А., Хмель И.А. Летучие вещества бактерий: структура, биосинтез, биологическая активность // Микробиология. 2019. Т. 88. С. 272–287.
  2. Veselova M.A., Plyuta V.A., Khmel I.A. Volatile compounds of bacterial origin: structure, biosynthesis, and biological activity // Microbiology (Moscow). 2019. V. 88. P. 261–274.
  3. Плюта В.А., Сидорова Д.Е., Завильгельский Г.Б., Котова В.Ю., Хмель И.А. Влияние летучих органических соединений, синтезируемых бактериями, на экспрессию с промоторов генов zntA, copA и arsR, индуцируемых в ответ на действие меди, цинка и мышьяка // Мол. генетика, микробиол. вирусол. 2020. Т. 3. С. 128‒135.
  4. Plyuta V.A., Sidorova D.E., Zavigelsky G.B., Kotova V. Yu., Khmel I.A. Effects of volatile organic compounds synthesized by bacteria on the expression from promoters of the zntA, copA, and arsR genes induced in response to copper, zinc, and arsenic // Mol. Genet. Microbiol. Virol. 2020. V. 35. P. 152–158.
  5. Ahmad A., Viljoen A.M., Chenia H.Y. The impact of plant volatiles on bacterial quorum sensing // Lett. Appl. Microbiol. 2014. V. 60. P. 8–19.
  6. Ansari M., Emami S. β-Ionone and its analogs as promising anticancer agents // Eur. J. Med. Chem. 2016. V. 123. P. 141–154.
  7. Audrain B., Farag M.A., Ryu C.-M., Ghigo J.-M. Role of bacterial volatile compounds in bacterial biology // FEMS Microbiol. Rev. 2015. V. 39. P. 222–233.
  8. Chernin L., Toklikishvili N., Ovadis M., Kim S., Ben-Ari J., Khmel I., Vainstein A. Quorum sensing quenching by rhizobacterial volatiles // Environ. Microbiol. Rep. 2011. V. 3. P. 698–704.
  9. Chernin L., Toklikishvili N., Ovadis M., Khmel I. Quorum-sensing quenching by volatile organic compounds emitted by rhizosphere bacteria // Molecular Microbiol. Ecology of the Rhizosphere. V. 2. / Ed. Frans J. de Bruijn. John Wiley & Sons. Inc., 2013. P. 791–800.
  10. Czajka J.J., Nathenson J.A., Benites V.T., Baidoo E.E.K., Cheng Q., Wang Y., Tang Y.J. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone // Microb. Cell Fact. 2018. V 17. P. 1–13.
  11. Effmert U., Kalderas J., Warnke R., Piechulla B. Volatile mediated interactions between bacteria and fungi in the soil // J. Chem. Ecol. 2012. V. 38. P. 665–703.
  12. Fincheira P., Quiroz A. Microbial volatiles as plant growth inducers // Microbiol. Res. 2018. V. 208. P. 63–75.
  13. Helman Y., Chernin L. Silencing the mob: Disrupting quorum sensing as a means to fight plant disease // Mol. Plant Pathol. 2015. V. 16. P. 316–329.
  14. Kai M., Haustein M., Molina F., Petri A., Scholz B., Piechulla B. Bacterial volatiles and their action potential // Appl. Microbiol. Biotechnol. 2009. V. 81. P. 1001–1012.
  15. Koksharova O.A., Popova A.A., Plyuta V.A., Khmel I.A. Four new genes of cyanobacterium Synechococcus elongatus PCC7942 are responsible for sensitivity to 2-nonanone // Microorganisms. 2020. V. 8. Art. 1234.
  16. Kotova V.Y., Manukhov I.V., Zavilgelskii G.B. Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress // Appl. Biochem. Microbiol. 2010. V. 46. P. 781–788.
  17. Melkina O.E., Khmel I.A., Plyuta V.A., Koksharova O.A., Zavilgelsky G.B. Ketones 2-heptanone, 2-nonanone, and 2-undecanone inhibit DnaK-dependent refolding of heat-inactivated bacterial luciferases in Escherichia coli cells lacking small chaperon IbpB // Appl. Microbiol. Biotechnol. 2017. V. 101. P. 5765–5771.
  18. Melkina O.E., Plyuta V.A., Khmel I.A., Zavilgelsky G.B. The mode of action of cyclic monoterpenes (–)-limonene and (+)-α-pinene on bacterial cells // Biomolecules. 2021. V. 11. P. 806.
  19. Paparella A., Shaltiel-Harpaza L., Ibdah M. β-Ionone: its occurrence and biological function and metabolic engineering // Plants (Basel). 2021. V. 10. P. 754.
  20. Plyuta V., Lipasova V., Popova A., Koksharova O., Kuznetsov A., Szegedi E., Chernin L., Khmel I. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms // APMIS. 2016. V. 124. P. 586–594.
  21. Plyuta V.A., Chernikova A.S., Sidorova D.E., Kupriyanova E.V., Koksharova O.A., Chernin L.S., Khmel I.A. Modulation of Arabidopsis thaliana growth by volatile substances emitted by Pseudomonas and Serratia strains // World J. Microbiol. Biotechnol. 2021. V. 37. P. 82.
  22. Popova A.A., Koksharova O.A., Lipasova V.A., Zaitseva Ju.V., Katkova-Zhukotskaya O.A., Eremina S. Iu., Mironov A.S., Chernin L.S., Khmel I.A. Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans and Drosophila melanogaster // BioMed Res. Int. 2014. V. 2014. Article ID125704. 11 p.
  23. Schmidt R., Cordovez V., de Boer W., Raaijmakers J., Garbeva P. Volatile affairs in microbial interactions // ISME J. 2015. V. 9. P. 2329–2335.
  24. Shi J., Cao C., Xu J., Zhou C. Research advances on biosynthesis, regulation, and biological activities of apocarotenoid aroma in horticultural plants // J. Chem. 2020. V. 2020. P. 1–11.
  25. Sidorova D.E., Plyuta V.A., Padiy D.A., Kupriyanova E.V., Roshina N.V., Koksharova O.A., Khmel I.A. The effect of volatile organic compounds on different organisms: agrobacteria, plants and insects // Microorganisms. 2022. V. 10. Art. 69.
  26. Sidorova D.E., Skripka M.I., Khmel I.A., Koksharova O.A., Plyuta V.A. Effects of volatile organic compounds on biofilms and swimming motility of Agrobacterium tumefaciens // Microorganisms. 2022. V. 10. Art. 1512.
  27. Sidorova D.E., Khmel I.A., Chernikova A.S., Chupriyanova T.A., Plyuta V.A. Biological activity of volatiles produced by the strains of two Pseudomonas and two Serratia species // Folia Microbiol. 2023. V. 68. P. 617‒626.
  28. Tyc O., Song C.X., Dickschat J.S., Vos M., Garbeva P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria // Trends Microbiol. 2017. V. 25. P. 280–292.
  29. Voronova E.N., Konyukhov I.V., Koksharova O.A., Popova A.A., Pogosyan S.I., Khmel I.A., Rubin A.B. Inhibition of cyanobacterial photosynthetic activity by natural ketones // J Phycol. 2019. V. 55. P. 840‒857.
  30. Weisskopf L., Schulz S., Garbeva P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions // Nat. Rev. Microbiol. 2021. V. 19. P. 391‒404.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The chemical structure of the β-ion.

下载 (29KB)
3. Fig. 2. Induction of bioluminescence of the lux biosensor E. coli MG1655 (pKatG'::lux) under the action of a β-ion. The ordinate axis shows the ratio of the luminescence value to the optical density of the culture of the lux biosensor E. coli MG1655 (pKatG'::lux) after 60 minutes (light columns) and 120 minutes (dark columns) of growth in the control (without the addition of VOCs) and under the action of 10 and 50 mmol β-ion, respectively. Hydrogen peroxide (100 mmol) was used as a positive control. All values represent average values ± standard deviations.

下载 (78KB)
4. Fig. 3. Induction of bioluminescence of the lux biosensor E. coli MG1655 (pColD'::lux) under the action of a β-ion. The ordinate axis shows the ratio of the luminescence value to the optical density of the culture of the lux biosensor E. coli MG1655 (pColD'::lux) after 60 minutes (light columns) and 120 minutes (dark columns) of growth in the control (without the addition of VOCs) and under the action of 10 and 50 mmol β-ion, respectively. Nalidixic acid (210 mmol) was used as a positive control. All values represent average values ± standard deviations.

下载 (72KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##