Гомологи тубулина бактерий и архей

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Долгое время считали, что белки цитоскелета отсутствуют у прокариот и имеются только у эукариот, однако за последние 30 лет у бактерий и архей обнаружены гомологи основных белков цитоскелета, в том числе тубулина. Свойства гомологов тубулина, в том числе цитоскелет-подобные структуры, формируемые ими в клетках прокариот, варьируют и значительно отличаются от соответствующих свойств тубулинов эукариот, поэтому представляется интересным сравнить между собой прокариотические гомологи тубулина, что и стало целью данной обзорной работы. Рассматриваются такие гомологи тубулина, имеющиеся у бактерий и архей, как FtsZ, TubZ, PhuZ, BtubA/BtubB, CetZ и другие. Кроме того, в работе обсуждается, что разнообразные гомологи тубулина прокариот могут являться мишенью для фармацевтических препаратов, подобно белку FtsZ, который уже является мишенью для перспективных антибиотиков.

Ключевые слова

Полный текст

Доступ закрыт

Об авторах

Н. А. Румянцева

Санкт-Петербургский политехнический университет Петра Великого

Email: vedyajkin_ad@spbstu.ru
Россия, Санкт-Петербург

Д. М. Голофеева

Санкт-Петербургский политехнический университет Петра Великого

Email: vedyajkin_ad@spbstu.ru
Россия, Санкт-Петербург

А. А. Хасанова

Санкт-Петербургский политехнический университет Петра Великого

Email: vedyajkin_ad@spbstu.ru
Россия, Санкт-Петербург

А. Д. Ведяйкин

Санкт-Петербургский политехнический университет Петра Великого

Автор, ответственный за переписку.
Email: vedyajkin_ad@spbstu.ru
Россия, Санкт-Петербург

Список литературы

  1. Addinall S. G., Bi E., Lutkenhaus J. FtsZ ring formation in fts mutants // J. Bacteriol. 1996. V. 178. P. 3877‒3884.
  2. Akıl C., Ali S., Tran L. T., Gaillard J., Li W., Hayashida K., Hirose M., Kato T., Oshima A., Fujishima K., Blanchoin L., Narita A., Robinson R. C. Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution // Sci. Adv. 2022. V. 8. Art. eabm2225.
  3. Alotaibi B. S. Targeting Filamenting temperature-sensitive mutant Z (FtsZ) with bioactive phytoconstituents: An emerging strategy for antibacterial therapy // PLoS One. 2023. V. 18. Art. e0290852.
  4. Andreu J. M., Oliva M. A. Purification and assembly of bacterial tubulin BtubA/B and constructs bearing eukaryotic tubulin sequences // Methods Cell Biol. 2013. V. 115. P. 269‒281.
  5. Attaibi M., den Blaauwen T. An updated model of the divisome: regulation of the septal peptidoglycan synthesis machinery by the divisome // Int. J. Mol. Sci. 2022. V. 23. Art. 3537.
  6. Aylett C. H.S., Duggin I. G. The tubulin superfamily in Archaea // Subcell. Biochim. 2017. V. 84. P. 393‒417.
  7. Baumann P., Jackson S. P. An archaebacterial homologue of the essential eubacterial cell division protein FtsZ // Proc. Natl. Acad. Sci. USA. 1996. V. 93. P. 6726‒6730.
  8. Bi E. F., Lutkenhaus J. FtsZ ring structure associated with division in Escherichia coli // Nature. 1991. V. 354. P. 161‒164.
  9. Binarová P., Tuszynski J. Tubulin: structure, functions and roles in disease // Cells. 2019. V. 8. Art. 1294.
  10. Birkholz E. A., Laughlin T. G., Armbruster E., Suslov S., Lee J., Wittmann J., Corbett K. D., Villa E., Pogliano J. A cytoskeletal vortex drives phage nucleus rotation during jumbo phage replication in E. coli // Cell. Rep. 2022. V. 40. Art. 111179.
  11. Bisson-Filho A.W., Hsu Y. P., Squyres G. R., Kuru E., Wu F., Jukes C., Sun Y., Dekker C., Holden S., VanNieuwenhze M.S., Brun Y. V., Garner E. C. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division // Science. 2017. V. 355. P. 739‒743.
  12. Bramhill D., Thompson C. M. GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules // Proc. Natl. Acad. Sci. USA. 1994. V. 91. P. 5813‒5817.
  13. Brown H. J., Duggin I. G. Diversity and potential multifunctionality of archaeal CetZ tubulin-like cytoskeletal proteins // Biomolecules. 2023. V. 13. Art. 134.
  14. Burns D. G., Janssen P. H., Itoh T., Kamekura M., Li Z., Jensen G., Rodríguez-Valera F., Bolhuis H., Dyall-Smith M. L. Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain // Int. J. Syst. Evol. Microbiol. 2007. V. 57. P. 387‒392.
  15. Busiek K. K., Margolin W. Bacterial actin and tubulin homologs in cell growth and division // Curr. Biol. 2015. V. 25. P. R243‒R254.
  16. Cabeen M. T., Jacobs-Wagner C. The bacterial cytoskeleton // Annu. Rev. Genet. 2010. V. 44. P. 365‒392.
  17. Casiraghi A., Suigo L., Valoti E., Straniero V. Targeting bacterial cell division: a binding site-centered approach to the most promising inhibitors of the essential protein FtsZ // Antibiotics (Basel). 2020. V. 9. Art. 69.
  18. Caspi Y., Dekker C. Dividing the archaeal way: the ancient Cdv cell-division machinery // Front. Microbiol. 2018. V. 9. Art. 174.
  19. Chaaban S., Brouhard G. J. A microtubule bestiary: structural diversity in tubulin polymers // Mol. Biol. Cell. 2017. V. 28. P. 2924‒2931.
  20. Chaikeeratisak V., Birkholz E. A., Pogliano J. The phage nucleus and PhuZ spindle: defining features of the subcellular organization and speciation of nucleus-forming jumbo phages // Front. Microbiol. 2021. V. 12. Art. 641317.
  21. Chan F. Y., Sun N., Neves M. A., Lam P. C., Chung W. H., Wong L. K., Chow H. Y., Ma D. L., Chan P. H., Leung Y. C., Chan T. H., Abagyan R., Wong K. Y. Identification of a new class of FtsZ inhibitors by structure-based design and in vitro screening // J. Chem. Inf. Model. 2013. V. 53. P. 2131‒2140.
  22. Cheng Z., Lu X., Feng B. A review of research progress of antitumor drugs based on tubulin targets // Transl. Cancer Res. 2020. V. 9. P. 4020‒4027.
  23. Chrétien D., Metoz F., Verde F., Karsenti E., Wade R. H. Lattice defects in microtubules: protofilament numbers vary within individual microtubules // J. Cell. Biol. 1992. V. 117. P. 1031‒1040.
  24. Corbin L. C., Erickson H. P. A unified model for treadmilling and nucleation of single-stranded FtsZ protofilaments // Biophys. J. 2020. V. 119. P. 792‒805.
  25. de Boer P., Crossley R., Rothfield L. The essential bacterial cell-division protein FtsZ is a GTPase // Nature. 1992. V. 359. P. 254‒256.
  26. de Boer P. A. Classic spotlight: discovery of ftsZ // J. Bacteriol. 2016. V. 198. P. 1184.
  27. Di Somma A., Canè C., Rotondo N. P., Cavalluzzi M. M., Lentini G., Duilio A. A comparative study of the inhibitory action of berberine derivatives on the recombinant protein FtsZ of E. coli // Int. J. Mol. Sci. 2023. V. 24. Art. е00211.
  28. Díaz-Celis C., Risca V. I., Hurtado F., Polka J. K., Hansen S. D., Maturana D., Lagos R., Mullins R. D., Monasterio O. Bacterial tubulins A and B exhibit polarized growth, mixed-polarity bundling, and destabilization by GTP hydrolysis // J. Bacteriol. 2017. V. 199. Art. е00211.
  29. Du S., Lutkenhaus J. Assembly and activation of the Escherichia coli divisome // Mol. Microbiol. 2017. V. 105. P. 177‒187.
  30. Du S., Lutkenhaus J. At the heart of bacterial cytokinesis: the Z ring // Trends Microbiol. 2019. V. 27. P. 781‒791.
  31. Du S., Pichoff S., Kruse K., Lutkenhaus J. FtsZ filaments have the opposite kinetic polarity of microtubules // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. 10768‒10773.
  32. Duggin I. G., Aylett C. H.S., Walsh J. C., Michie K. A., Wang Q., Turnbull L., Dawson E. M., Harry E. J., Whitchurch C. B., Amos L. A., Löwe J. CetZ tubulin-like proteins control archaeal cell shape // Nature. 2015. V. 519. P. 362‒365.
  33. Erickson H. P., Anderson D. E., Osawa M. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one // Microbiol. Mol. Biol. Rev. 2010. V. 74. P. 504‒528.
  34. Findeisen P., Mühlhausen S., Dempewolf S., Hertzog J., Zietlow A., Carlomagno T., Kollmar M. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family // Genome Biol. Evol. 2014. V. 6. P. 2274‒2288.
  35. Fink G., Aylett C. H.S. Tubulin-like proteins in prokaryotic DNA positioning // Subcell. Biochem. 2017. V. 84. P. 323‒356.
  36. Fu G., Huang T., Buss J., Coltharp C., Hensel Z., Xiao J. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM) // PLoS One. 2010. V. 5. Art. e12682.
  37. Fuentes-Pérez M.E., Núñez-Ramírez R., Martín-González A., Juan-Rodríguez D., Llorca O., Moreno-Herrero F., Oliva M. A. TubZ filament assembly dynamics requires the flexible C-terminal tail // Sci. Rep. 2017. V. 7. Art. 43342.
  38. Guan J., Bondy-Denomy J. Intracellular organization by jumbo bacteriophages // J. Bacteriol. 2020. V. 203. Art. е00362.
  39. Gudimchuk N. B., Alexandrova V. V. Measuring and modeling forces generated by microtubules // Biophys. Revs. 2023. V. 15. Art. 1095.
  40. Haeusser D. P., Margolin W. Splitsville: structural and functional insights into the dynamic bacterial Z ring // Nat. Rev. Microbiol. 2016. V. 14. P. 305‒319.
  41. Han H., Wang Z., Li T., Teng D., Mao R., Hao Y., Yang N., Wang X., Wang J. Recent progress of bacterial FtsZ inhibitors with a focus on peptides // FEBS J. 2021. V. 288. P. 1091‒1106.
  42. Harry E. J., Pogliano K., Losick R. Use of immunofluorescence to visualize cell-specific gene expression during sporulation in Bacillus subtilis // J. Bacteriol. 1995. V. 177). P. 3386‒3393.
  43. Haydon D. J., Stokes N. R., Ure R., Galbraith G., Bennett J. M., Brown D. R., Baker P. J., Barynin V. V., Rice D. W., Sedelnikova S. E., Heal J. R., Sheridan J. M., Aiwale S. T., Chauhan P. K., Srivastava A., et al. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity // Science. 2008. V. 321. P. 1673‒1675.
  44. Hemaiswarya S., Soudaminikkutty R., Narasumani M. L., Doble M. Phenylpropanoids inhibit protofilament formation of Escherichia coli cell division protein FtsZ // J. Med. Microbiol. 2011. V. 60. P. 1317‒1325.
  45. Holden S. J., Pengo T., Meibom K. L., Fernandez Fernandez C., Collier J., Manley S. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 4566‒4571.
  46. Hong W., Deng W., Xie J. The structure, function, and regulation of Mycobacterium FtsZ // Cell Biochem. Biophys. 2013. V. 65. P. 97‒105.
  47. Hoshino S., Hayashi I. Filament formation of the FtsZ/tubulin-like protein TubZ from the Bacillus cereus pXO1 plasmid // J. Biol. Chem. 2012. V. 287. P. 32103‒32112.
  48. Janke C., Magiera M. M. The tubulin code and its role in controlling microtubule properties and functions // Nat. Rev. Mol. Cell Biol. 2020. V. 21. P. 307‒326.
  49. Jenkins C., Samudrala R., Anderson I., Hedlund B. P., Petroni G., Michailova N., Pinel N., Overbeek R., Rosati G., Staley J. T. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 17049‒17054.
  50. Kattan J., Doerr A., Dogterom M., Danelon C. Shaping liposomes by cell-free expressed bacterial microtubules // ACS Synth. Biol. 2021. V. 10. P. 2447‒2455.
  51. Kaul M., Mark L., Zhang Y., Parhi A. K., Lyu Y. L., Pawlak J., Saravolatz S., Saravolatz L. D., Weinstein M. P., LaVoie E.J., Pilch D. S. TXA709, an FtsZ-targeting benzamide prodrug with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus // Antimicrob. Agents Chemother. 2015. V. 59. P. 4845‒4855.
  52. Kiefel B. R., Gilson P. R., Beech P. L. Diverse eukaryotes have retained mitochondrial homologues of the bacterial division protein FtsZ // Protist. 2004. V. 155. P. 105‒115.
  53. Kim K. W. Prokaryotic cytoskeletons: in situ and ex situ structures and cellular locations // Antonie van Leeuwenhoek. 2019. V. 112. P. 145‒157.
  54. Larsen R. A., Cusumano C., Fujioka A., Lim-Fong G., Patterson P., Pogliano J. Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis // Genes Dev. 2007. V. 21. P. 1340‒1352.
  55. Li Z., Trimble M. J., Brun Y. V., Jensen G. J. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division // EMBO J. 2007. V. 26. P. 4694‒4708.
  56. Löwe J. Crystal structure determination of FtsZ from Methanococcus jannaschii // J. Struct. Biol. 1998. V. 124. P. 235‒243.
  57. Mahone C. R., Goley E. D. Bacterial cell division at a glance // J. Cell. Sci. 2020. V. 133. Art. jcs237057.
  58. Makarova K. S., Koonin E. V. Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea // Biology Direct. 2010. V. 5. Art. 33.
  59. Margolis R. L., Wilson L. Microtubule treadmilling: what goes around comes around // Bioessays. 1998. V. 20. P. 830‒836.
  60. Martin-Galiano A.J., Oliva M. A., Sanz L., Bhattacharyya A., Serna M., Yebenes H., Valpuesta J. M., Andreu J. M. Bacterial tubulin distinct loop sequences and primitive assembly properties support its origin from a eukaryotic tubulin ancestor // J. Biol. Chem. 2011. V. 286. P. 19789‒19803.
  61. McCausland J.W., Yang X., Squyres G. R., Lyu Z., Bruce K. E., Lamanna M. M., Soderstrom B., Garner E. C., Winkler M. E., Xiao J., Liu J. Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism // Nat. Commun. 2021. V. 12. Art. 609.
  62. McQuillen R., Xiao J. Insights into the structure, function, and dynamics of the bacterial cytokinetic FtsZ-ring // Annu. Rev. Biophys. 2020. V. 49. P. 309‒341.
  63. Mishra D., Srinivasan R. Catching a Walker in the act — DNA partitioning by ParA family of proteins // Front. Microbiol. 2022. V. 13. Art. 856547.
  64. Moore D. A., Whatley Z. N., Joshi C. P., Osawa M., Erickson H. P. Probing for binding regions of the FtsZ protein surface through site-directed insertions: discovery of fully functional FtsZ-fluorescent proteins // J. Bacteriol. 2017. V. 199. Art. e00553.
  65. Mullakhanbhai M. F., Larsen H. Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement // Arch. Microbiol. 1975. V. 104. P. 207‒214.
  66. Müller F. D., Raschdorf O., Nudelman H., Messerer M., Katzmann E., Plitzko J. M., Zarivach R., Schüler D. The FtsZ-like protein FtsZm of Magnetospirillum gryphiswaldense likely interacts with its generic homolog and is required for biomineralization under nitrate deprivation // J. Bacteriol. 2014. V. 196. P. 650‒659.
  67. Ni L., Xu W., Kumaraswami M., Schumacher M. A. Plasmid protein TubR uses a distinct mode of HTH-DNA binding and recruits the prokaryotic tubulin homolog TubZ to effect DNA partition // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 11763‒11768.
  68. Oliva M. A., Cordell S. C., Löwe J. Structural insights into FtsZ protofilament formation // Nat. Struct. Mol. Biol. 2004. V. 11. P. 1243‒1250.
  69. Oliva M. A., Martin-Galiano A.J., Sakaguchi Y., Andreu J. M. Tubulin homolog TubZ in a phage-encoded partition system // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 7711‒7716.
  70. Osawa M., Erickson H. P. Turgor pressure and possible constriction mechanisms in bacterial division // Front. Microbiol. 2018. V. 9. Art. 111.
  71. Ouellette S. P., Lee J., Cox J. V. Division without binary fission: cell division in the FtsZ-less Chlamydia // J. Bacteriol. 2020. V. 202. Art. e00252–20.
  72. Panda D., Bhattacharya D., Gao Q. H., Oza P. M., Lin H. Y., Hawkins B., Hibbs D. E., Groundwater P. W. Identification of agents targeting FtsZ assembly // Future Med. Chem. 2016. V. 8. P. 1111‒1132.
  73. Pilhofer M., Ladinsky M. S., McDowall A.W., Petroni G., Jensen G. J. Microtubules in bacteria: ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton // PLoS Biol. 2011. V. 9. Art. e1001213.
  74. Pradhan P., Margolin W., Beuria T. K. Targeting the achilles heel of FtsZ: the interdomain cleft // Front. Microbiol. 2021. V. 12. Art. 732796.
  75. Prichard A., Lee J., Laughlin T. G., Lee A., Thomas K. P., Sy A., Spencer T., Asavavimol A., Cafferata A., Cameron M., Chiu N., Davydov D., Desai I., Diaz G., Guereca M., et al. Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage RAY // Cell. Rep. 2023. V. 42. Art. 112432.
  76. Richards K. L., Anders K. R., Nogales E., Schwartz K., Downing K. H., Botstein D. Structure-function relationships in yeast tubulins // Mol. Biol. Cell. 2000. V. 11. P. 1887‒1903.
  77. Santana-Molina C., Del Saz-Navarro D., Devos D. P. Early origin and evolution of the FtsZ/tubulin protein family // Front. Microbiol. 2022. V. 13. Art. 1100249.
  78. Scheffers D. J., de Wit J. G., den Blaauwen T., Driessen A. J. GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers // Biochemistry. 2002. V. 41. P. 521‒529.
  79. Schlieper D., Oliva M. A., Andreu J. M., Löwe J. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 9170‒9175.
  80. Silber N., Opitz C. L.M. d., Mayer C., Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target // Future Microbiol. 2020. V. 15. P. 801‒831.
  81. Soderstrom B., Skoog K., Blom H., Weiss D. S., von Heijne G., Daley D. O. Disassembly of the divisome in Escherichia coli: evidence that FtsZ dissociates before compartmentalization // Mol. Microbiol. 2014. V. 92. P. 1‒9.
  82. Sogawa H., Sato R., Suzuki K., Tomioka S., Shinzato T., Karpov P., Shulga S., Blume Y., Kurita N. Binding sites of Zantrin inhibitors to the bacterial cell division protein FtsZ: molecular docking and ab initio molecular orbital calculations // Chem. Physics. 2020. V. 530. Art. 110603.
  83. Szwedziak P., Wang Q., Bharat T. A., Tsim M., Lowe J. Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division // Elife. 2014. V. 3. Art. e04601.
  84. Takashina T., Hamamoto T., Otozai K., Grant W. D., Horikoshi K. Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium // Syst. Appl. Microbiol. 1990. V. 13. P. 177‒181.
  85. Tamarit D., Caceres E. F., Krupovic M., Nijland R., Eme L., Robinson N. P., Ettema T. J. G. A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses // Nat. Microbiol. 2022. V. 7. P. 948‒952.
  86. TerBush A.D., Yoshida Y., Osteryoung K. W. FtsZ in chloroplast division: structure, function and evolution // Curr. Opin. Cell. Biol. 2013. V. 25. P. 461‒470.
  87. Toro-Nahuelpan M., Corrales-Guerrero L., Zwiener T., Osorio-Valeriano M., Müller F.-D., Plitzko J. M., Bramkamp M., Thanbichler M., Schüler D. A gradient-forming MipZ protein mediating the control of cell division in the magnetotactic bacterium Magnetospirillum gryphiswaldense // Mol. Microbiol. 2019. V. 112. P. 1423‒1439.
  88. Van De Putte P., Van D., Roersch A. The selection of mutants of Escherichia coli with impaired cell division at elevated temperature // Mutat. Res. 1964. V. 1. P. 121‒128.
  89. Vaughan S., Wickstead B., Gull K., Addinall S. G. Molecular evolution of FtsZ protein sequences encoded within the genomes of Archaea, Bacteria, and Eukaryota // J. Mol. Evol. 2004. V. 58. P. 19‒29.
  90. Vedyaykin A. D., Ponomareva E. V., Khodorkovskii M. A., Borchsenius S. N., Vishnyakov I. E. Mechanisms of bacterial cell division // Microbiology (Moscow). 2019. V. 88. P. 245‒260.
  91. Vedyaykin A. D., Vishnyakov I. E., Polinovskaya V. S., Khodorkovskii M. A., Sabantsev A. V. New insights into FtsZ rearrangements during the cell division of Escherichia coli from single-molecule localization microscopy of fixed cells // Microbiologyopen. 2016. V. 5. P. 378‒386.
  92. Walker R. A., O’Brien E.T., Pryer N. K., Soboeiro M. F., Voter W. A., Erickson H. P., Salmon E. D. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies // J. Cell. Biol. 1988. V. 107. P. 1437‒1448.
  93. Weisenberg R. C. Microtubule formation in vitro in solutions containing low calcium concentrations // Science. 1972. V. 177. P. 1104‒1105.
  94. Whitley K. D., Jukes C., Tregidgo N., Karinou E., Almada P., Cesbron Y., Henriques R., Dekker C., Holden S. FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division // Nat. Commun. 2021. V. 12. Art. 2448.
  95. Xie W., Xu D., Chen F., Wang Z., Luo J., He Y., Zheng Q., Liu C. Integrated cytological, physiological, and transcriptome analyses provide insight into the albino phenotype of chinese plum (Prunus salicina) // Int. J. Mol. Sci. 2023. V. 24. Art. 14457.
  96. Yao Q., Jewett A. I., Chang Y. W., Oikonomou C. M., Beeby M., Iancu C. V., Briegel A., Ghosal D., Jensen G. J. Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis // EMBO J. 2017. V. 36. P. 1577‒1589.
  97. Zehr E. A., Kraemer J. A., Erb M. L., Coker J. K., Montabana E. A., Pogliano J., Agard D. A. The structure and assembly mechanism of a novel three-stranded tubulin filament that centers phage DNA // Structure. 2014. V. 22. P. 539‒548.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Филогенетическое дерево бактериальных и архейных FtsZ (сиреневый цвет), FtsZ хлоропластов (темно-красный цвет, вверху слева), митохондриальных FtsZ (синий цвет), архейных CetZ (желтый цвет), TubZ (светло-красный цвет, внизу слева), BtubA и BtubB (оранжевый цвет) и дрожжевых тубулинов (светло-зеленый цвет), PhuZ (голубой цвет). Филогенетическое дерево было построено с помощью программного обеспечения IQ-TREE методом максимального правдоподобия и визуализировано с помощью ITOL

Скачать (750KB)
3. Рис. 2. Трехмерные структуры белков-гомологов тубулина в комплексе с нуклеотидом (ГТФ или ГДФ, обозначен красным). TUBA1B — α-тубулин человека типа 1B (идентификатор PDB: 7pjf); OdinTubulin — белок асгардархей OdinTubulin из Candidatus Odinarchaeum yellowstonii (идентификатор PDB: 7EVB); CetZ1 — белок CetZ1 архей Haloferax volcanii (идентификатор PDB: 4b46); EC FtsZ — белок FtsZ E. coli (идентификатор PDB: 6UNX); BS FtsZ — белок FtsZ B. subtilis (идентификатор PDB: 2vam); TubZ — белок TubZ Bacillus thuringiensis (идентификатор PDB: 3m89). Цветовая кодировка соответствует положению в аминокислотной последовательности: синий цвет — N-конец, красный — С-конец

Скачать (369KB)
4. Рис. 3. Роль белка FtsZ в делении бактериальной клетки. Слева — схема бинарного деления бактерий: после репликации ДНК (синие овалы) посередине клетки образуется Z-кольцо (зеленая линия), которое в процессе деления постепенно сужается. Справа — визуализация Z-кольца во время цитокинеза при помощи сверхразрешающей микроскопии; микрофотографии, обозначенные цифрами от 1 до 9, упорядочены приблизительно в порядке сокращения Z-кольца. Фиолетовым отмечена ДНК, зеленым — FtsZ (цитировано по Vedyaykin et al., 2016)

Скачать (426KB)
5. Рис. 4. Состав бактериальной дивисомы на примере E. coli. В верхней части указана локализация основных белков дивисомы относительно мембран и клеточной стенки, а также друг относительно друга. Межбелковые взаимодействия отражены контактом белков (например, между FtsE и FtsX), а также стрелками (цитировано по Vedyaykin et al., 2019)

Скачать (654KB)

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах