Effect of the PotN Protein on Activities of the GlnR and PotA Proteins in the Cells of Lentilactobacillus hilgardii

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Bacterial PII-like proteins are global regulators of nitrogen and energy metabolism, which respond to nutrient availability by binding their partner proteins, thus modulating their activity. The PotN protein from Lentilactobacillus hilgardii, a member of the new family of PII-like proteins, is capable of competitive binding of ATP and ADP, thus regulating metabolism in response to the cell energy status. Thus, under ADP excess, PotN binds this nucleotide and interacts mostly with the PotA subunit of the polyamine АВС transporter, suppressing its ATPase activity. PotN also dissociates from the transcription factor GlnR, restoring its ability to bind DNA and modulate expression of the genes of the GlnR regulon. On the contrary, in the ATP state PotN dissociates from PotA and binds to the GlnR factor.

Texto integral

Acesso é fechado

Sobre autores

Z. Iskhakova

Kazan (Volga Region) Federal University

Autor responsável pela correspondência
Email: zalinunya@mail.ru
Rússia, Kazan, 420008

D. Zhuravleva

Kazan (Volga Region) Federal University

Email: zalinunya@mail.ru
Rússia, Kazan, 420008

A. Kayumov

Kazan (Volga Region) Federal University

Email: zalinunya@mail.ru
Rússia, Kazan, 420008

Bibliografia

  1. Журавлева Д.Э. Регулон фактора транскрипции GlnR в клетках Lentilactobacillus hilgardii и механизм регуляции его ДНК-связывающей активности. Автореферат дис. … канд. биол. наук, 28.12.2021. Казань: Казанский федеральный университет, 2021. 24 с.
  2. Каюмов А.Р. Молекулярные механизмы регуляции азотного обмена грамположительных бактерий. Автореферат дис. … докт. биол. наук, 24.01.2019. Казань: Казанский федеральный университет, 2018. 40 с.
  3. Forchammer K., Selim K.A., Huergo L.F. New views on PII signaling: from nitrogen sensing to global metabolic control // Trends Microbiol. 2022. V. 30. P. 733‒735.
  4. Gerhardt E.C.M., Parize E., Gravina F., Pontes F.L.D., Santos A.R.S., Araújo G.A.T., Goedert A.C., Urbanski A.H., Steffens M.B.R., Chubatsu L.S., Pedrosa F.O., Souza E.M., Forchhammer K., Ganusova E., Alexandre G., de Souza G.A., Huergo L.F. The protein–protein interaction network reveals a novel role of the signal transduction protein PII in the control of c-di-GMP homeostasis in Azospirillum brasilense // mSystems. 2020. V. 5. Art. e00817–20.
  5. Grau F.C., Burkovski A., Muller Y.A. Crystal structures of adenylylated and unadenylylated PII protein GlnK from Corynebacterium glutamicum // Acta Crystallogr. D Struct. Biol. 2021. V. 77. P. 325‒335.
  6. Igarashi K., Kashiwagi K. Modulation of cellular function by polyamines // Int. J. Biochem. Cell Biol. 2010. V. 42. P. 39‒51.
  7. Iskhakova Z., Zhuravleva D., Laykov A., Forchhammer K., Kayumov A. The preliminary characterization of P-II like protein GlnK from Lactobacillus brevis // FEBS J. 2016. V. 283. P. 228.
  8. Iskhakova Z., Zhuravleva D.E., Heim C., Hartmann M.D., Laykov A.V., Forchhammer K., Kayumov A.R. PotN represents a novel energy-state sensing PII subfamily, occurring in firmicutes // FEBS J. 2022. V. 289. P. 5305‒5321.
  9. Lanzetta P.A., Alvarez L.J., Reinach P.S., Candia O.A. An improved assay for nanomole amounts of inorganic phosphate // Anal. Biochem. 1979. V. 100. P. 95‒97.
  10. Lüddecke J., Forchhammer K. From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation // PLoS. One. 2013. V. 8. Art. e83181.
  11. Santos A.R.S., Gerhardt E.C.M., Parize E., Pedrosa F.O., Steffens M.B.R., Chubatsu L.S., Souza E.M., Passaglia L.M.P., Sant’Anna F.H., de Souza G.A., Huergo L.F. NAD+ biosynthesis in bacteria is controlled by global carbon/nitrogen levels via PII signaling // J. Biol. Chem. 2020. V. 295. P. 6165‒6176.
  12. Selim K.A., Lapina T., Forchhammer K., Ermilova E. Interaction of N-acetyl-l-glutamate kinase with the PII signal transducer in the non-photosynthetic alga Polytomella parva: co-evolution towards a hetero-oligomeric enzyme // FEBS J. 2020. V. 287. P. 465‒482.
  13. Xu M., Tang M., Chen J., Yang T., Zhang X., Shao M., Xu Z., Rao Z. PII signal transduction protein GlnK alleviates feedback inhibition of N-acetyl-l-glutamate kinase by l-arginine in Corynebacterium glutamicum // Appl. Environ. Microbiol. 2020. V. 86. Art. e00039-20.
  14. Zhuravleva D.E., Iskhakova Z.I., Ozhegov G.D., Gogoleva N.E., Khusnutdinova D.R., Shagimardanova E.I., Forchhammer K., Kayumov A.R. Complete genome sequence of Lactobacillus hilgardii LMG 7934, carrying the gene encoding for the novel PII-like protein PotN // Curr. Microbiol. 2020. V. 77. P. 3538‒3545.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The effect of PotN on the ATPase activity of PotAc. Glutamine synthetase (GS, positive control) and bovine serum albumin (BSA, negative control) were used as controls. The graph shows the average values ± standard deviation from 3 repeats of the experiment. The significance of the differences between the PotN-PotAc and PotAc complexes was assessed by the Kruskal–Wallis method with the Shidak correction. The differences were considered significant at *p < 0.05.

Baixar (68KB)
3. Fig. 2. The level of relative fluorescence of DNA. (a) — Typical MST traces of changes in the fluorescence intensity of a single DNA and a DNA-GlnR complex. (b) — A change in the intensity of DNA fluorescence in the PotN-GlnR-PotAc-DNA system in combination with various nucleotides. The significance of fluorescence differences in the presence of different nucleotides was assessed by the Student's t-test. The differences were considered significant at *p < 0.05.

Baixar (102KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies