Actinomycetes Rhodococcus ruber – Key and Universal Bioxidizers of Gaseous Alkanes C₂−C₄
- Authors: Ivshina I.B.1,2, Kuyukina M.S.1,2, Krivoruchko A.V.1,2, Tyumina E.A.1,2
-
Affiliations:
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences
- Perm National Research State University
- Issue: Vol 94, No 1 (2025)
- Pages: 3-32
- Section: REVIEWS
- URL: https://journals.rcsi.science/0026-3656/article/view/288934
- DOI: https://doi.org/10.31857/S0026365625010019
- ID: 288934
Cite item
Abstract
In recent years, there has been an increasing interest of researchers in microorganisms capable of oxidizing higher gaseous homologues of methane (ethane, propane, n-butane). Among propane- and butane-oxidizing bacteria, representatives of Rhodococcus ruber attract special attention; they can easily adapt to extreme environmental conditions and have significant potential for biotechnology. The review emphasizes the importance of R. ruber as a bioindicator of oil and gas fields and a component of microbial consortia for the degradation of hydrocarbons and other xenobiotics. Data on natural substrates and ecological niches of gas-oxidizing Rhodococcus are presented, their morphological and physiological features are described. Their role in biogeochemical cycles and the potential for industrial use are discussed. As a result of the analysis of functional genes and enzyme systems of gaseous hydrocarbon (C2−C4) catabolism, the key stages of propane oxidation in Rhodococcus were identified and the role of propanotrophy in the bioremediation potential of R. ruber was revealed. The need for further research to understand the mechanisms of adaptation of these microorganisms to anthropogenic impact was substantiated.
Full Text

About the authors
I. B. Ivshina
Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm National Research State University
Author for correspondence.
Email: ivshina@iegm.ru
Russian Federation, Perm, 614081; Perm, 614990
M. S. Kuyukina
Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm National Research State University
Email: ivshina@iegm.ru
Russian Federation, Perm, 614081; Perm, 614990
A. V. Krivoruchko
Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm National Research State University
Email: ivshina@iegm.ru
Russian Federation, Perm, 614081; Perm, 614990
E. A. Tyumina
Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm National Research State University
Email: ivshina@iegm.ru
Russian Federation, Perm, 614081; Perm, 614990
References
- Богданова В. М. Физиологические свойства микроорганизмов, выделенных в атмосфере метана и пропана // Микробиология. 1966. Т. 35. № 2. С. 980−983.
- Бокова Е. Н. Окисление этана и пропана некоторыми видами микобактерий // Микробиология. 1954. Т. 23. № 1. С. 15−21.
- Глазачева Л. Е., Ившина И. Б., Оборин А. А. Клеточные приспособления Rhodococcus rhodochrous и Rhodococcus ruber, усваивающих пропан и н-бутан // Микробиология. 1990. Т. 59. № 2. С. 301−306.
- Губин В. М. Об усваивающих углеводороды бактериях Тамбуканской и Петровской грязи в связи с вопросом газообразования // Курортное дело. 1923. № 5. С. 58.
- Ившина И. Б. Состояние и проблемы развития специализированных центров микробиологических ресурсов в России. Обзор // Микробиология. 2012. Т. 81. С. 551−560.
- Ivshina I. B. Current situation and challenges of Specialized Microbial Resource Centers in Russia // Microbiology (Moscow). 2012. V. 81. P. 509−516. https://doi.org/10.1134/S0026261712050098
- Ившина И. Б., Оборин А. А., Нестеренко О. А., Касумова С. А. Бактерии рода Rhodococcus грунтовых вод района нефтяных месторождений // Микробиология. 1981. Т. 50. С. 709−716.
- Ившина И. Б., Нестеренко О. А. Глазачева Л. Е., Шеховцов В. П. Электронно-микроскопическое изучение факультативных газоиспользующих Rhodococcus rhodochrous // Микробиология. 1982. Т. 51. С. 477–481.
- Ившина И. Б., Пшеничнов Р. А., Оборин А. А. Пропанокисляющие родококки. Свердловск: УНЦ АН СССР, 1987. 125 с.
- Ившина И. Б., Бердичевская М. В., Зверева Л. В., Рыбалка Л. В., Еловикова Е. А. Фенотипическая характеристика алканотрофных родококков из различных экосистем // Микробиология. 1995. Т. 64. Вып. 4. C. 507–513.
- Ившина И.Б., Куюкина М. С. Селективное выделение пропанокисляющих родококков с использованием антибиотических веществ // Микробиология. 1997. Т. 66. С. 494−500.
- Ivshina I. B., Kuyukina M. S. Isolation of propane-oxidizing rhodococci on selective media with antibiotics // Microbiology (Moscow). 1997. V. 66. P. 413−418.
- Ившина И. Б., Пешкур Т. А., Коробов В. П. Эффективное извлечение цезия клетками бактерий рода Rhodococcus // Микробиология. 2002. Т. 71. P. 418–423.
- Ivshina I. B., Peshkur T. A., Korobov V. P. Efficient uptake of cesium ions by Rhodococcus cells // Microbiology (Moscow). 2002. V. 71. P. 357–361. https://doi.org/10.1023/a:1015875216095
- Ившина И. Б., Гришко В. В., Ноговицина Е. М., Кукина Т. П., Толстиков А. Г. Биотрансформация b-ситостерола и сложных эфиров β-ситостерола актинобактериями рода Rhodococcus // Прикл. биохим. микробиол. 2005. Т. 41. С. 626–633.
- Ivshina I. B., Grishko V. V., Nogovitsina E. M., Kukina T. P., Tolstikov A. G. Bioconversion of β-sitosterol and its esters by actinobacteria of the genus Rhodococcus // Appl. Biochem. Microbiol. 2005. V. 41. P. 551−557. https://doi.org/10.1007/s10438-005-0100-y
- Ившина И. Б., Каменских Т. Н., Анохин Б. А. Адаптационные механизмы выживания алканотрофных родококков, реализованные в неблагоприятных условиях среды // Вестник Пермского университета. Серия Биология. 2007. Вып. 5. № 10. С. 107‒112.
- Ившина И. Б., Куюкина М. С., Каменских Т. Н., Криворучко А. В., Тюмина Е. А., Елькин А. А. Углеводородокисляющие родококки: особенности биологической организации под воздействием экополлютантов. Атлас-монография // Под ред. И.Б. Ившиной. УрО РАН, 2021. 140 с. https://elibrary.ru/item.asp?id=46512049
- Коронелли Т. В. Принципы и методы интенсификации биологического разрушения углеводородов окружающей среды (обзор) // Прикл. биохим. микробиол. 1996. Т. 32. С. 579‒585.
- Koronelli T. V. Principles and methods for raising the efficiency of biological degradation of hydrocarbons in the environment: review // Appl. Biochem. Microbiol. 1996. V. 32. P. 519−525.
- Коршунова И. О., Писцова О. Н., Куюкина М. С., Ившина И. Б. Влияние органических растворителей на жизнеспособность и морфофункциональные свойства родококков // Прикл. биохим. микробиол. 2016. Т. 52. P. 53–61.
- Korshunova I. O., Pistsova O. N., Kuyukina M. S., Ivshina I. B. The effect of organic solvents on the vability and morphofunctional properties of Rhodococcus // Appl. Biochem. Microbiol. 2016. V. 52. P. 43–50. https://doi.org/10.1134/S0003683816010075
- Куликова А. К., Безбородов А. М. Усвоение пропана и свойства пропанмонооксигеназы из Rhodococcus erythropolis 3/89 // Прикл. биохим. микробиол. 2001. Т. 37. P. 186–189.
- Kulikova A. K., Bezborodov A. M. Assimilation of propane and characterization of propane monooxygenase from Rhodococcus erythropolis 3/89 // Appl. Biochem. Microbiol. 2001. V. 37. P. 164–167. https://doi.org/10.1023/A:1002827831098
- Куюкина М. С., Ившина И. Б., Рычкова М. И., Чумаков О. Б. Влияние состава клеточных липидов на формирование неспецифической антибиотикорезистентности алканотрофных родококков // Микробиология. 2000. Т. 69. С. 62‒69.
- Kuyukina M. S., Ivshina I. B., Ritchkova M. I., Chumakov O. B. Effect of cell lipid composition on the formation of nonspecific antibiotic resistance in alkanotrophic rhodococci // Microbiology (Moscow). 2000. V. 69. P. 51−57. https://doi.org/10.1007/BF02757257
- Могилевский Г. А. Микробиологические исследования в связи с газовой съемкой // Разведка недр. 1938. № 8‒9. С. 59‒66.
- Mogilevsky G. A. Microbiological investigations in connecting with gas surveying // Razvedka Nedr. 1938. V. 8. P. 59−68.
- Могилевский Г. А. Микробиологический метод поисков газовых и нефтяных залежей. М.‒Л.: Гостоптехиздат, 1953. 56 с.
- Оборин А. А., Стадник Е. В. Нефтегазопоиcковая геомикробиология. Екатеринбург: УрО РАН, 1996. 408 c.
- Патент РФ. 2002. № 2180276.
- Патент РФ. 2002. № 2193464.
- Патент РФ. 2013. № 2475542.
- Патент РФ. 2019. № 2707536.
- Патент РФ. 2023. № 2798871.
- Патент РФ. 2024. № 2818318.
- Патент США. 1972. № 3635796.
- Славнина Г. П. Термофильный вариант Mycobacterium luteum // Микробиология. 1962. Т. 31. № 5. С. 819.
- Смирнова З. С. Отношение метан- и пропанокисляющих бактерий к различным источникам азота // Микробиология. 1962. Т. 31. С. 980−983.
- Смирнова З. С., Таптыкова С. Д. Использование пропана и его производных некоторыми видами проактиномицетов // Микробиология. 1967. Т. 36. С. 381‒385.
- Телегина З. П. Видовой состав микроорганизмов, использующих бутан // Микробиология. 1966. Т. 35. С. 1059‒1063.
- Телегина З. П. Использование углеводородов микроорганизмами, выделенными на средах с алифатическими спиртами // Микробиология. 1968. Т. 37. P. 885−889.
- Aliakbari E., Tebyanian H., Hassanshahian M., Kariminik A. Degradation of alkanes in contaminated sites // Int. J. Adv. Biol. Biomed. Res. 2014. V. 2. P. 1620−1637.
- Amouric A., Verhe F., Auria R., Casalot L. Study of a hexane-degrading consortium in a biofilter and in liquid culture: biodiversity, kinetics and characterization of degrading strains // FEMS Microbiol. Ecol. 2006. V. 55. P. 239–247. https://doi.org/10.1111/j.1574-6941.2005.00017.x
- Amouric A., Quéméneur M., Grossi V., Liebgott P.-P., Auria R., Casalot L. Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete // J. Appl. Microbiol. 2010. V. 108. P. 1903–1916. https://doi.org/10.1111/j. 1365-2672. 2009. 04592.x
- Arp D. J. Butane metabolism by butane-grown “Pseudomonas butanovora” // Microbiology (Reading). 1999. V. 145. P. 1173−1180.https://doi.org/10.1099/13500872-145-5-1173
- Ashraf W., Murrell J. C. Purification and characterization of a NAD+-dependent secondary alcohol dehydrogenase from propane-grown Rhodococcus rhodochrous PNKb1 // Arch. Microbiol. 1990. V. 153. P. 163–168. https://doi.org/10.1007/BF00247815
- Ashraf W., Murrell J. C. Genetic, biochemical and immunological evidence for the involvement of two alcohol dehydrogenases in the metabolism of propane by Rhodococcus rhodochrous PNKb1 // Arch. Microbiol. 1992. V. 157. P. 488–492. https://doi.org/10.1007/BF00276767
- Ashraf W., Mihdhir A., Murrell J. C. Bacterial oxidation of propane // FEMS Microbiol. Lett. 1994. V. 122. P. 1–6. https://doi.org/10.1111/j.1574-6968.1994.tb07134.x
- Awala S. I., Gwak J.-H., Kim Y.-M., Kim S.-J., Strazzulli A., Dunfield P., Yoon H., Kim G.-J., Rhee S.-K. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone // ISME J. 2021. V. 15. P. 3636–3647. https://doi.org/10.1038/s41396-021-01037-2
- Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M., Kubal M., Meyer F., Olsen G. J., Olson R., Osterman A. L., Overbeek R. A., McNeil L.K., Paarmann D., Paczian T., Parrello B., Pusch G. D., Reich C., Stevens R., Vassieva O., Vonstein V., Wilke A., Zagnitko O. The RAST Server: Rapid annotations using subsystems technology // BMC Genomics. 2008. V. 9. Art. 75.https://doi.org/10.1186/1471-2164-9-75
- Babu J. P., Brown L. R. New type of oxygenase involved in the metabolism of propane and isobutene // Appl. Environ. Microbiol. 1984. V. 48. P. 260–264. https://doi.org/10.1128/aem.48.2.260-264.1984
- Baptist J. N., Gholson R. K., Coon M. J. Hydrocarbon oxidation by a bacterial enzyme system: I. Products of octane oxidation // Biochim. Biophys. Acta. 1963. V. 69. P. 40–47. https://doi.org/10.1016/0006-3002(63)91223- x
- Bell C. H., Wong J., Parsons K., Semel W., McDonough J., Gerber K. First full-scale in situ propane biosparging for co-metabolic bioremediation of 1,4-dioxane // Ground Water Monit. Remed. 2022. V. 42. P. 54–66. https://doi.org/10.1111/gwmr.12511
- Bell K. S., Kuyukina M. S., Heidbrink S., Philp J. C., Aw D. W.J., Ivshina I. B., Christofi N. Identification and environmental detection of Rhodococcus species by 16S rDNA-targeted PCR // J. Appl. Microbiol. 1999. V. 87. P. 472−480. https://doi.org/10.1046/j.1365-2672.1999.00824.x
- Blevins W. T., Perry J. J. Metabolism of propane, n-propylamine, and propionate hydrocarbon-utilizing bacteria // J. Bacteriol. 1972. V. 112. P. 513−518.https://doi.org/10.1128/jb.112.1.513-518.1972
- Brettin T., Davis J. J., Disz T., Edwards R. A., Gerdes S., Olsen G. J., Olson R., Overbeek R., Parrello B., Pusch G. D., Shukla M., Thomason J. A., Stevens R., Vonstein V., Wattam A. R., Xia F. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes // Sci. Rep. 2015. V. 5. Art. 8635. https://doi.org/10.1038/srep08365
- Cappelletti M., Di Gennaro P., D’Ursi P., Orro A., Mezzelan A., Landini M., Fedi S., Frascari D., Presentato A., Zannoni D., Milanesi L. Genome sequence of Rhodococcus sp. strain BCP1, a biodegrader of alkanes and chlorinated compounds // Genome Announc. 2013. V. 1. Art. e00657-13. https://doi.org/10.1128/genomeA.00657-13
- Cappelletti M., Presentato A., Milazzo G., Turner R. J., Fedi S., Frascari D., Zannoni D. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes // Front. Microbiol. 2015. V. 6. Art. 393. https://doi.org/10.3389/fmicb.2015.00393
- Cappelletti M., Pinelli D., Fedia S., Zannonia D., Frascarib D. Aerobic co‐metabolism of 1,1,2,2‐tetrachloroethane by Rhodococcus aetherivorans TPA grown on propane: kinetic study and bioreactor configuration analysis // J. Chem. Technol. Biotechnol. 2018. V. 93. P. 155−165. https://doi.org/10.1002/jctb.5335
- Cappelletti M., Fedi S., Zannoni D. Degradation of alkanes in Rhodococcus // Biology of Rhodococcus / Ed. Alvarez H. M. Springer Nature, Switzerland, AG, 2019a. V. 16. P. 137−171. https://doi.org/10.1007/978-3-030-11461-9_6
- Catalogue of Strains of Regional Specialized Collection of Alkanotrophic Microorganisms [http://www.iegmcol/strains/index.html [25.06.2024].
- Cavicchioli R., Ripple W. J., Timmis K. N., Azam F., Bakken L. R., Baylis M., Behrenfeld M. J., Boetius A., Boyd P. W., Classen A. T., Crowther T. W., Danovar R., Foreman C. M., Huisman J., Hutchins D. A., Jansson J. K., Karl D. M., Koskella B., Welch D. B.M., Martiny J. B.H., Moran M. A., Orphan V. J., Reay D. S., Remais J. V., Rich V. I., Singh B. K., Stein L. Y., Stewart F. J., Sullivan M. B., van Oppen M. J.H., Weaver S. C., Webb E. A., Webster N. S. Scientists’ warning to humanity: microorganisms and climate change // Nat. Rev. Microbiol. 2019. V. 17. P. 569−586. https://doi.org/10.1038/s41579-019-0222-5
- Сerniglia C. E., Perry J. J. Crude oil degradation by microorganisms isolated from the marine environment // Z. Allg. Mikrobiol. 1973. V. 13. P. 299–306. https://doi.org/10.1002/jobm.3630130403
- Сerniglia C. E., Perry J. J. Metabolism of n-propylamine, isopropylamine, and 1,3-propane diamine by Mycobacterium convolutum // J. Bacteriol. 1975. V. 124. P. 285−289.https://doi.org/10.1128/jb.124.1.285-289.1975
- Chen Y., Ren H., Kong X., Wu H., Lu Z. A multicomponent propane monooxygenase catalyzes the initial degradation of methyl tert-butyl ether in Mycobacterium vaccae JOB5 // Appl. Environ. Microbiol. 2023. V. 89. Art. e01187-23. https://doi.org/10.1128/aem.01187-23
- Chidambarampadmavathy K., Obulisamy K., Heimann K. Role of copper and iron in methane oxidation and bacterial biopolymer accumulation // Engineer. Life Sci. 2015. V. 15. P. 387–399. https://doi.org/10.1002/elsc.201400127
- Coleman J. P., Perry J. J. Purification and characterization of the secondary alcohol dehydrogenase from propane-utilizing Mycobacterium vaccae strain JOB-5 // J. Gen. Microbiol. 1985. V. 131. P. 2901‒2907.
- Coleman N. V., Bui N. B., Holmes A. J. Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments // Environ. Microbiol. 2006. V. 8. P. 1228–1239. https://doi.org/10.1111/j.1462-2920.2006.01015.x
- Coleman N. V., Le N. B., Ly M. A., Ogawa H. E., McCarl V., Wilson N. L., Holmes A. L. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone // ISME J. 2012. V. 6. P. 171–182. https://doi.org/10.1038/ismej.2011.98
- Crombie A. T. The effect on lanthanum on growth and gene expression in a facultative methanotroph // Environ. Microbiol. 2022. V. 24. P. 596−613.
- https://doi.org/10.1111/1462-2920.15685
- Crombie A. T., Murrell J. C. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris // Nature. 2014. V. 510. P. 148–151.https://doi.org/10.1038/nature13192
- Currie F., Twigg M. S., Hudlesson N., Simons K. E., Marchaut R., Banat I. M. Biogenic propane production by a marine Photobacterium strain isolated from the Westen English Channel // Front. Microbiol. 2022. V. 13. Art. 1000247. https://doi.org/10.3389/fmicb.2022.1000247
- Davis J. B. Cellular lipids of a Nocardia grown on propane and n-butane // Appl. Microbiol. 1964. V. 12. P. 301–304. https://doi.org/10.1128/am.12.4.301-304.1964
- Davis J. B., Chase H. H., Raymond R. L. Mycobacterium paraffinicum n. sp. a bacterium isolated from soil // Appl. Microbiol. 1956. V. 4. P. 310−315. https://doi.org/10.1128/am.4.6.310-315.1956
- Davis J.B, Raymond R. L. Oxidation of alkyl-substituted cyclic hydrocarbons by a nocardia during growth on n-alkanes // Appl. Microbiol. 1961. V. 9. P. 383‒388.https://doi.org/10.1128/am.9.5.383-388.1961
- Davies J. S., Wellman A. M., Zajic J. E. Hyphomycetes utilizing natural gas // Can. J. Microbiol. 1973. V. 19. P. 81–85. https://doi.org/10.1139/m73-012
- de Carvalho C. C.C.R. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions // Res. Microbiol. 2012. V. 163. P. 125–136. https://doi.org/10.1016/j.resmic.2011.11.003
- de Carvalho C. C.C.R., Costa S. S., Fernandes P., Couto I., Viveiros M. Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus // Front. Physiol. 2014. V. 5. Art. 133. https://doi.org/10.3389/fphys.2014.00133
- Declerck S. W.A., van der Heijden M. G.A., Varese G. C., Turkovskaya O. V., Evtushenko L. I., Ivshina I. B., Desmeth P. PERN: An EU-Russia initiative for rhizosphere microbial resources // Trends Biotechnol. 2015. V. 33. P. 377–380. https://doi.org/10.1016/j.tibtech.2015.03.005
- Dedysh S. N., Knief C., Dunfield P. F. Methylocella species are facultatively methanotrophic // J. Bacteriol. 2005. V. 187. P. 4665−4670. https://doi.org/10.1128/JB.187.13.4665−4670.2005
- Deng C., Yu X., Yang J., Li B., Sun W., Yuan H. J. Universal indicators for oil and gas prospecting based on bacterial communities shaped by light-hydrocarbon microseepage in China // Microbiol. Biotechnol. 2016. V. 26. P. 1320−1332. https://doi.org/10.4014/jmb.1602.02045
- Deng D., Li F., Li M. A novel propane monooxygenase initiating degradation of 1,4-dioxane by Mycobacterium dioxanotrophicus PH-06 // Environ. Sci. Technol. Lett. 2018. V. 5. P. 86–91.https://doi.org/10.1021/acs.estlett.7b00504
- Deng Y., Deng C., Yang J., Li B., Wang E., Yuan H. Novel butane-oxidizing bacteria and diversity of bmoX genes in Puguang gas field // Front. Microbiol. 2018. V. 9. Art. 1576. https://doi.org/10.3389/fmicb.2018.01576
- Desmeth P., Bosschaerts М. The necessary adaptation of culture collections to the new socioeconomic environment at global level // Microbial diversity: current situation, conservation strategy and biotechnological potential / Proc. 3rd int. conf. “Microbial Diversity: Current Situation, Conservation Strategy and Biotechnological Potential”. Eds. Ivshina I. B., Kuyukin, M.S., Kamenskikh T. N., Alfimova L. A. Perm, 2008. P. 144–146.
- Dubbels B. L., Sayavedra-Soto L.A., Bottoml P. J., Arp D. J. Thauera butanivorans sp. nov., a C2−C9 alkane-oxidizing bacterium previously referred to as “Pseudomonas butanovora” // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 1576−1578. https://doi.org/10.1099/ijs.0.000638-0
- Dubinsky E. A., Conrad M. E., Chakraborty R., Bill M., Borglin S. E., Hollibaugh J. T., Mason O. U., Piceno Y. M., Reid F. C., Stringfellow W. T., Tom L. M., Hazen T. C., Andersen G. L. Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the gulf of Mexico // Environ. Sci. Technol. 2013. V. 47. P. 10860–10867. https://doi.org/10.1021/es401676y
- Dunlap K. R., Perry J. J. Effect of substrate on the fatty acid composition of hydrocarbon-utilizing microorganisms // J. Bacteriol. 1967. V. 94. P. 1919−1924. https://doi.org/10.1128/jb.94.6.1919-1923.1967
- Dworkin M., Foster J. W. Experiments with some microorganisms with utilize ethane and hydrogen // J. Bacteriol. 1958. V. 75. P. 502−603. https://doi.org/10.1128/jb.75.5.592−603.1958
- Eshghdoostkhatami Z., Cupples A. M. Occurrence of Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA across microbial communities and their enumeration during 1,4-dioxane biodegradation // J. Microbiol. Methods. 2024. V. 219. Art. 106908. https://doi.org/10.1016/j.mimet.2024.106908
- Etiope G., Klusman R. W. Geologic emissions of methane to the atmosphere // Chemosphere. 2002. V. 49. P. 777−789. https://doi.org/10.1016/s0045-6535(02)00380-6
- Etiope G., Ciccioli P. Earth’s degassing: a missing ethane and propane source // Science. 2009. V. 323. Art. 478. https://doi.org/10.1126/science.1165904
- Etiope G., Feyzullayev A., Baciu C. L. Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin // Mar. Pet. Geol. 2009. V. 36. P. 333–344. https://doi.org/10.1016/j.marpetgeo.2008.03.001
- Farhan Ul Haque M., Crombie A. T., Murrell J. C. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps // Microbiome. 2019. V. 7. Art. 134. https://doi.org/10.1186/s40168-019-0741-3
- Farhan Ul Haque M., Hernández M., Crombie A. T., Murrell J. C. Identification of active gaseous-alkane degraders at natural gas seeps // ISME J. 2022. V. 16. P. 1705–1716. https://doi.org/10.1038/s41396-022-01211-0
- Ferrari E., di Benedetto G., Firrincieli A., Presentato A., Frascari D., Cappelletti M. Unravelling the role of the group 6 soluble di-iron monooxygenase (SDIMO) SmoABCD in alkane metabolism and chlorinated alkane degradation // Microbial. Biotechnol. 2024. V. 17. Art. e14453. https://doi.org/10.1111/1751-7915.14453
- Frascari D., Pinelli D., Nocentini M., Fedi S., Pii Y., Zannoni D. Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1 // Appl. Microbiol. Biotechnol. 2006. V. 73. P. 421–428. https://doi.org/10.1007/s00253-006-0433-3
- Frascari D., Pinelli D., Nocentini M., Baleani E., Cappelletti M., Fedi S. A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp. PB1 // Biochem. Engineer. J. 2008. V. 42. P. 139–147. https://doi.org/10.1016/j.bej.2008.06.011
- Gerrich H., Lascarro J. F., Sengupta S., Daly E., Nemerow N., Wong K. Characterization of gas produced by the anaerobic digestion of municipal solid waste – Alternative energy sources, 3. Proc. 3. Washington. 1983. V. 7. P. 291−299.
- Goff K. L., Hug L. A. Environmental potential for microbial 1,4-dioxane degradation is sparse despite mobile elements playing a role in trait distribution // Appl. Environ. Microbiol. 2022. V. 88. Article e02091–e02021. https://doi.org/10.1128/aem.02091-21
- Haase K., Wendlandt K.-D., Gräber A., Stottmeister U. Cometabolic degradation of MTBE using methane-propane- and butane-utilizing enrichment cultures and Rhodococcus sp. BU3 // Engineer. Life Sci. 2006. V. 6. P. 508–513. https://doi.org/10.1002/elsc.200520144
- Hamamura N., Page C., Long T., Semprini L., Arp D. J. Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane grown Methylosinus trichosporium OB3b // Appl. Environ. Microbiol. 1997. V. 63. P. 3607–3613. https://doi.org/10.1128/aem.63.9.3607-3613.1997
- Hamamura N., Storfa R. T., Semprini L., Arp D. J. Diversity in butane monooxygenases among butane-grown bacteria // Appl. Environ. Microbiol. 1999. V. 65. P. 4586−4593. https://doi.org/10.1128/AEM.65.10.4586-4593.1999
- Hamamura N., Chris M. Yeager C. M., Arp D. J. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8 // Appl. Environ. Microbiol. 2001. V. 67. P. 4992−4998. https://doi.org/10.1128/AEM.67.11.4992–4998.2001
- Hara H., Stewart G. R., Mohn W. W. Involvement of a novel ABC transporter and monoalkyl phthalate ester hydrolase in phthalate ester catabolism by Rhodococcus jostii RHA1 // Appl. Environ. Microbiol. 2010. V. 76. P. 1516–1523. https://doi.org/10.1128/AEM.02621-09
- Haußmann U., Wolters D. A., Fränzel B., Eltis L. D., Poetsch A. Physiological adaptation of the Rhodococcus jostii RHA1 membrane proteome to steroids as growth substrates // J. Proteome Res. 2013. V. 12. P. 1188–1198. https://doi.org/10.1021/pr300816n
- Hazen T. C., Dubinsky E. A., DeSantis T.Z., Andersen G. L., Piceno Y. M., Singh N., Jansson J. K., Probst A., Borglin S. E., Fortney J. L., Stringfellow W. T., Bill M., Conrad M. E., Tom L. M., Chavarria K. L., Alusi T. R., Lamendella R., Joyner D. C., Spier C., Baelum J., Auer M., Zemla M. L., Chakraborty R., Sonnenthal E. L., D’haeseleer P., Holman H.-Y.N., Osman S., Lu Z., van Nostrand J. D., Deng Y., Zhou J., Mason O. U. Deep-sea oil plume enriches indigenous oil-degrading bacteria // Science. 2010. V. 330. P. 204‒211. https://doi.org/10.1126/science.1196830
- Heiss-Blanquet S., Benoit Y., Maréchaux C., Monot F. Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR // J. Appl. Microbiol. 2005. V. 99. P. 1392−1403. https://doi.org/10.1111/j.1365-2672.2005.02715.x
- Hinrichs K.-U., Hayes J. M., Bach W., Spivack A. J., Hmelo L. R., Holm N. G., Johnson C. G., Silva S. P. Biological formation of ethane and propane in the deep marine subsurface // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 14684−14689. https://doi.org/10.1073/pnas.0606535103
- Horvitz L. Vegetation and geochemical prospecting for petroleum // Bull. Amer. Assoc. Petrol. Geol. 1972. V. 56. P. 925−940.
- Hou C. T., Patel R., Laskin A. I., Barnabe N., Barist I. Epoxidation of short-chain alkenes by resting-cell suspensions of propane-grown bacteria // Appl. Environ. Microbiol. 1983a. V. 46. P. 171 – 177. https://doi.org/10.1128/aem.46.1.171-177.1983
- Hou C. T., Patel R. N., Laskin A. I., Barnab N., Baris I. Production of methyl ketones from secondary alcohols by cell suspensions of C2 to C4 n-alkane-grown bacteria // Appl. Environ. Microbiol. 1983b. V. 46. P. 178–184. https://doi.org/10.1128/aem.46.1.178−184.1983
- Huizenga J. M., Semprini L. Influence of growth substrate and contaminant mixtures on the degradation of BTEX and MTBE by Rhodococcus rhodochrous ATCC strain 21198 // Biodegradation. 2023. V. 34. P. 461–475. https://doi.org/10.1007/s10532-023-10037-2
- Ivshina I. B., Kuyukina M. S., Philp J. C., Christofi N. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species // World J. Microbiol. Biotechnol. 1998. V. 14. P. 711–717. https://doi.org/10.1023/A:1008885309221
- Ivshina I. B., Kuyukina M. S. Turning Russian specialized microbial culture collections into resource centers for biotechnology // Trends Biotechnol. 2013. V. 31. P. 609−611. https://doi.org/org/10.1016/j.tibtech.2013.08.002
- Ivshina I. B., Kuyukina M. S., Krivoruchko A. V., Plekhov O. A., Naimark O. B., Podorozhko E. A., Lozinsky V. I. Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust // Appl. Microbiol. Biotechnol. 2013. V. 97. P. 5315−5327. https://doi.org/10.1007/s00253-013-4869-y
- Ivshina I., Kostina L., Krivoruchko A., Kuyukina M., Peshkur T., Anderson P., Cunningham C. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231 // J. Hazard. Mater. 2016. V. 312. P. 8–17. https://doi.org/10.1016/j.jhazmat.2016.03.007
- Ivshina I. B., Kuyukina M. S., Krivoruchko A. V. Hydrocarbon-oxidizing bacteria and their potential in eco-biotechnology and bioremediation // Microbial resources: from functional existence in nature to industrial applications / Ed. Kurtböke I. New York: Elsevier, 2017. P. 121–148. https://doi.org/10.1016/B978-0-12-804765-1.00006-0
- Ivshina I. B., Kuyukina M. S. Specialized microbial resource centers: a driving force of the growing bioeconomy // Microbial resource conservation / Eds. Sharma, S.K., Varma, A. Springer International Publishing AG, part of Springer Nature, 2018. V. 54. P. 111−140. https://doi.org/10.1007/978-3-319-96971-8_4
- Ivshina I. B., Tyumina E. A., Kuzmina M. V., Vikhareva E. V. Features of diclofenac biodegradation by Rhodococcus ruber IEGM 346 // Sci. Rep. 2019. V. 9. Art. 9159. https://doi.org/10.1038/s41598-019-45732-9
- Ivshina I. B., Kuyukina M. S., Krivoruchko A. V., Tyumina E. A. Responses to ecopollutants and pathogenization risks of saprotrophic Rhodococcus species // Pathogens. 2021. V. 10. Art. 974. https://doi.org/10.3390/pathogens10080974
- Ivshina I., Bazhutin G., Tyumina E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: through the past into the future // Front. Microbiol. 2022. V. 13. Art. 967127. https://doi.org/10.3389/fmicb.2022.967127
- Ivshina I. B., Kuyukina M. S., Krivoruchko A. V. Draft genome sequence of propane- and butane-oxidizing Rhodococcus ruber IEGM 333 able to accumulate cesium // Microbiol. Resour. Announc. 2024a. Art. e00101-24. https://doi.org/10.1128/mra.00101-24
- Ivshina I. B., Kuyukina M. S., Krivoruchko A. V. Extremotolerant Rhodococcus as an important resource for environmental biotechnology // Actinomycetes in marine and extreme environments: unexhausted sources for microbial biotechnology / Ed. Kurtböke I. Boca Raton: Science Publishers, CRC Press, 2024b. P. 209−246.https://doi.org/10.1201/9780429293948
- Ivshina I. B., Kuyukina M. S., Litvinenko L. V., Golysheva A. A., Kostrikina N. A., Sorokin V. V., Mulyukin A. L. Bioaccumulation of molybdate ions by alkanotrophic Rhodococcus leads to significant alterations in cellular ultrastructure and physiology // Ecotoxicol. Environ. Saf. 2024c. V. 274. Art. 116190. https://doi.org/10.1016/j.ecoenv.2024.116190
- Iwabuchi N., Sharma P. K., Sunairi M., Kishi E., Sugita K., van der Mei H. C., Nakajima M., Busscher H. J. Role of interfacial tensions in the translocation of Rhodococcus erythropolis during growth in a two phase culture // Environ. Sci. Technol. 2009. V. 43. P. 8290–8294. https://doi.org/10.1021/es901208s
- Jaekel U., Vogt C., Fischer A., Richnow H. H., Musat F. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria // Environ. Microbiol. 2014. V. 16. P. 130–140. https://doi.org/10.1111/1462-2920.12251
- Ji Y., Mao G., Wang Y., Bartiam M. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases // Front. Microbiol. 2013. V. 14. Art. 58. https://doi.org/10.3389/fmicb.2013.00058
- Johnson E. L., Hyman M. R. Propane and n-butane oxidation by Pseudomonas putida GPo1 // Appl. Environ. Microbiol. 2006. V. 72. P. 950–952. https://doi.org/10.1128/AEM.72.1.950-952.2006
- Jurtshuk P., Cardini G. E. The mechanism of hydrocarbon oxidation by a Corynebacterium species // Crit. Rev. Microbiol. 1971. V. 1. P. 239–289.
- Kester A. S., Foster J. W. Diterminal oxidation of long-chain alkanes by bacteria // J. Bacteriol. 1963. V. 85. P. 859‒869.
- Kikukawa H., Koyasu R., Yasohara Y., Ito N., Mitsukura K., Yoshida T. Asymmetric oxidation of 1,3-propanediols to chiral hydroxyalkanoic acids by Rhodococcus sp. 2N // Biosci. Biotechnol. Biochem. 2019. V. 83. P. 768–773. https://doi.org/10.1080/09168451.2018.1559031
- Kormendy A. C., Wayman M. Characteristic cytoplasmic structures in microorganisms utilizing n-butane and 1-butanol // Can. J. Microbiol. 1974. V. 20. P. 225–230. https://doi.org/10.1139/m74-035
- Kotani T., Yamamoto T., Yurimoto H., Sakai Y., Kato N. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5 // J. Bacteriol. 2003. V. 185. P. 7120–7128. https://doi.org/10.1128/jb.185.24.7120-7128.2003
- Kotani T., Kawashima Y., Yurimoto H., Kato N., Saki Y. Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7 // J. Biosci. Bioeng. 2006a. V. 102. P. 184–192. https://doi.org/10.1263/jbb.102.184
- Kotani T., Yurimoto H., Kato N., Sakai Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5 // J. Bacteriol. 2006b. V. 189. P. 886‒893.https://doi.org/10.1128/JB.01054-06
- Krivoruchko A. V., Kuyukina M. S., Peshkur T. A., Cunningham C. J., Ivshina I. B. Rhodococcus strains from the Specialized Collection of Alkanotrophs for biodegradation of aromatic compounds // Molecules. 2023. V. 28. Art. 2393. https://doi.org/10.3390/molecules2805239
- Kulig J. K., Spandolf C., Hyde R., Ruzzini A. C., Eltis L. D., Grönberg G., Hayes M. A., Grogan G. A P450 fusion library of heme domains from Rhodococcus jostii RHA1 and its evaluation for the biotransformation of drug molecules // Bioorg. Med. Chem. 2015. V. 23. P. 5603–5609.https://doi.org/10.1016/j.bmc.2015.07.025
- Kurth E. G., Doughty D. M., Bottomley P. J., Arp D. J., Sayavedra-Soto L.A. Involvement of BmoR and BmoG in n-alkane metabolism in “Pseudomonas butanovora” // Microbiology (Reading). 2008. V. 154. P. 139–147. https://doi.org/10.1099/mic.0.2007/012724-0
- Kuyukina M. S., Glebov G. G., Ivshina I. B. Effects of nickel nanoparticles on Rhodococcus surface morphology and nanomechanical properties // Nanomaterials. 2022. V. 12. Art. 951. https://doi.org/ 10.3390/nano12060951
- Laczi K., Kis Á., Horváth B., Maróti G., Hegedüs B., Perei K., Rákhely G. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons // Appl. Microbiol. Biotechnol. 2015. V. 99. P. 9745–9759.https://doi.org/10.1007/s00253-015-6936-z
- Lai C.-Y., Wu M., Lu X., Wang Y., Yuan Z., Guo J. Microbial perchlorate reduction driven by ethane and propane // Environ. Sci. Technol. 2021. V. 55. P. 2006–2015. https://doi.org/10.1021/acs.est.0c04103
- Lakshmi M., Rasheed M. A., Madhavi T., Rajeswara Reddy B., Kalpana M. S., Patil D. J., Daval A. M. Geochemical exploration for hydrocarbons in the soils of southeast of Krishna-Godavari Basin, Andhra Pradesh // J. Geol. Soc. India. 2012. V. 80. P. 641−652. https://doi.org/10.1007/s12594-012-0190-0
- Li J.-L., Zhai X., Chen R., Wu Y.-C., Zhang H.-H. Occurrence and emission of non-methane hydrocarbons in the East China Sea: roles of phytoplankton assemblages // Environ. Chem. 2021. V. 18. P. 247−260. https://doi.org/10.1071/EN210660
- Linton J. D., Godley A. R., Bailey M. L., Barnes L. J. Growth of an ethane-utilizing mixed culture in a chemostat // J. Appl. Bacteriol. 1980. V. 48. P. 341–347. https://doi.org/10.1111/J.1365-2672.1980.TB01021.X
- Lippincott D., Streger S. H., Schaefer C. E., Hinkle J., Stormo J., Steffan R. J. Bioaugmentation and propane biosparging for in situ biodegradation of 1,4-dioxane // Ground Water Monit. Remed. 2015. V. 35. P. 81–92. https://doi.org/10.1111/gwmr.12093
- Liu C., Zhang L., Yu H., Zhang H., Niu H., Gai J. Bioreduction of Cr(VI) using a propane-based membrane biofilm reactor // Environ. Sci. Pollut. Res. 2023. V. 30. P. 32683–32695. https://doi.org/10.1007/s11356-022-24146-7
- Luk A. W.S., Beckmann S., Manefield M. Depedency of DNA extraction efficiency on cell concentration confounds molecular quantification of microorganisms in groundwater // FEMS Microbiol. Ecol. 2018. V. 94. Art. 146. https://doi.org/10.1093/femsec/fiy146
- Lukins H. B., Foster J. W. Methyl ketone metabolism in hydrocarbon-utilizing mycobacteria // J. Bacteriol. 1963. V. 85. P. 1074−1087. https://doi.org/10.1128/jb.85.5.1074-1087.1963
- MacMichael G.J., Brown L. R. Role of carbon dioxide in catabolism of propane by “Nocardia paraffinicum” (Rhodococcus rhodochrous) // Appl. Environ. Microbiol. 1987. V. 53. P. 65–69. https://doi.org/10.1128/aem.53.1.65-69.1987
- Madeira F., Madhusoodanan N., Lee J., Eusebi A., Niewielska A., Tivey A. R.N., Lopez R., Butcher S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024 // Nucl. Acids Res. 2024. Art. gkae241. https://doi.org/10.1093/nar/gkae241
- Malachowsky K. J., Phelps T. J., Teboli A. B., Minnikin D. E., White D. C. Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species // Appl. Environ. Microbiol. 1994. V. 60. P. 542–548. https://doi.org/10.1128/aem.60.2.542-548.1994
- Masai E., Yamada A., Healy J. M., Hatta T., Kimbara K., Fukuda M., Yano K. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 1995. V. 61. P. 2079–2085. https://doi.org/10.1128/aem.61.6.2079-2085.1995
- Mason O. U., Hazen T. C., Borglin S., Chain P. S.G., Dubinsky E. A., Fortney J. L., Han J., Holman H.-Y.N., Hultman J., Lamendella R., Mackelprang R., Malfatti S., Tom L. M., Tringe S. G., Woyke T., Zhou J., Rubin E. M., Jansson J. K. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill // ISME J. 2012. V. 6. P. 1715–1727. https://doi.org/10.1038/ismej.2012.59
- Mason O. U., Han J., Woyke T., Jansson J. K. Single-cell genomics reveals features of a Colwella species that was dominant during the Deepwater Horison oil spill // Front. Microbiol. 2014. V. 5. Art. 332. https://doi.org/10.3389/FMICB.2014.00332
- Mazzini A., Sciarra A., Etiope G., Sadavarte P., Houweling S., Pandey S., Husein A. Relevant methane emission to the atmosphere from a geological gas manifestation // Sci. Rep. 2021. V. 11. Art. 4138. https://doi.org/10.1038/s41598-021-83369-9
- McAuliffe C. Solubility in water of C1−С9 hydrocarbons // Nature. 1963. V. 200. P. 1092−1093. https://doi.org/10.1038/1001092A0
- McLee A.G., Kormendy A. C., Wayman M. Isolation of n-butane-utilizing organisms // Can. J. Microbiol. 1972. V. 18. P. 1191–1195. https://doi.org/10.1139/m72-186
- McLeod M.P., Warren R. L., Hsiao W. W., Araki N., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A. L., Wang D., Dosanjh M., Hara H., Petrescu A., Morin R. D., Yang G., Stott J. M., Schein J. E., Shin H., Smailus D., Siddiqui A. S., Marra M. A., Jones S. J., Holt R., Brinkman F. S., Miyauchi K., Fukuda M., Davies J. E., Mohn W. W., Eltis L. D. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 15582−15587. https://doi.org/10.1073/pnas.0607048103
- Miao Y., Heintz M. B., Bell C. H., Johnson N. W., Polasko A. L., Favero D., Mahendra S. Profiling microbial community structures and functions in bioremediation strategies for treating 1,4-dioxane-contaminated groundwater // J. Hazar. Mater. 2021. V. 408. Art. 124457. https://doi.org/10.1016/j.jhazmat.2020.124457
- Microbial Resource Conservation, Soil Biology. Eds. Sharma S. K., Varma A. Springer International Publishing AG. Part of Springer Nature, 2018. https://doi.org/10.1007/978-3-319-96971-8_4
- Miqueletto P. B., Andreote F. D., Dias A. C.F., Ferreira J. C., Dos Santos Neto E. V., de Oliveira V. M. Cultivation-independent methods applied to the microbial prospection of oil and gas in soil from a sedimentary basin in Brazil // AMB Express. 2011. V. 1. Art. 35. https://doi.org/10.1186/2191-0855-1-35
- Moreno Horn M., Garbe L.-A., Tressl R., Adrian L., Görisch H. Biodegradation of bis(1-chloro-2-propyl) ether via initial ether scission and subsequent dehalogenation by Rhodococcus sp. strain DTB // Arch. Microbiol. 2003. V. 179. P. 234–241.https://doi.org/10.1007/s00203-003-0522-y
- Moreno R., Rojo F. Enzymes for aerobic degradation of alkanes in bacteria // Aerobic utilization of hydrocarbons, oils, and lipids / Ed. Rojo F. Springer International Publishing, Cham. 2019. P. 117–142. https://doi.org/10.1007/978-3-319-50418-6_6
- Murrell J. C., McDonald I.R., Gilbert B. Regulation of expression of methane monooxygenases by copper ions // Trends Microbiol. 2000. V. 8. P. 221–225. https://doi.org/10.1016/S0966-842X(00)01739-X
- Mutnuri L., Rasheed M. A., Madhavi T., Reddy R., Kalpana M. S., Patil D. J., Dayal A. Geochemical exploration for hydrocarbons in the soils of southeast of Krishna-Godavari Basin, Andhra Pradesh // J. Geolog. Soc. India. 2012. V. 80. P. 641−652. https://doi.org/10.1007/s12594-012-0190-0
- Neumann G., Veeranagouda Y., Karegoudar T. B., Sahin O., Mäusezahl I., Kabelitz N., Kappelmeyer U., Heipieper H. J. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size // Extremophiles. 2005. V. 9. P. 163–168. https://doi.org/10.1007/s00792-005-0431-x
- Onodera M., Ogasawara N. Propane oxidation activity and its induction in a gaseous hydrocarbon assimilating mold Scedosporium sp. A-4 // Agric. Biol. Chem. 1990. V. 54. P. 731‒736.
- Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., Edwards R. A., Gerdes S., Parrello B., Shukla M., Vonstein V., Wattam A. R., Xia F., Stevens R. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) // Nucl. Acids Res. 2014. V. 42. Database issue. D206–D214. https://doi.org/10.1093/nar/gkt1226
- Overmann J. Significance and future role of microbial resource centers // Syst. Appl. Microbiol. 2015. V. 38. P. 258−265. https://doi.org/10.1016/j.syapm.2015.02.008
- Pabst G. S. Brown L. R. The role of isopropyl alcohol in the microbial metabolism of propane // Dev. Ind. Microbiol. 1968. V. 9. P. 394–400.
- Padda R. S., Pandey K. K., Kaul S., Nair V. D., Jain R. K., Basus S. K., Chakrabarti T. A novel gene encoding a 54 kDa polypeptide is essential for butane utilization by Pseudomonas sp. IMT37 // Microbiology (Reading). 2001. V. 147. P. 2479−2491. https://doi.org/10.1099/00221287-147-9-2479
- Pandey K. K., Mayilraj S., Chakrabarti T. Pseudomonas indica sp. nov., a novel butane-utilizing species // Int. J. Syst. Evol. Microbiol. 2002. V. 52. P. 1559–1567.https://doi.org/10.1099/00207713-52-5-1559
- Patel N. R., Hou C. T., Laskin A. I., Felix A., Derelanko P. Oxidation of alkanes by organisms grown on C2−C4 alkanes // J. Appl. Biochem. 1983. V. 5. P. 107−120.
- Perry J. J. Propane utilization by microorganisms // Adv. Appl. Microbiol. 1980. V. 26. P. 89−115. https://doi.org/10.1016/S0065-2164(08)70331-9
- Pen Y., Zhang Z. J., Morales-García A.L., Mears M., Tarmey D. S., Edyvean R. G., Banwart S. A., Geoghegan M. Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus // Biochim. Biophys. Acta. 2015. V. 1848. P. 518–526. https://doi.org/10.1016/j.bbamem.2014.11.007
- Phillips W. E., Perry J. J. Metabolism of n-butane and 2-butanone by Mycobacterium vaccae // J. Bacteriol. 1974. V. 120. P. 987−989. https://doi.org/10.1128/jb.120.2.987-989.1974
- Philp J. C., Kuyukina M. S., Ivshina I. B., Dunbar S. A., Christofi N., Lang S., Wray V. Alkanotrophic Rhodococcus ruber as a biosurfactant producer // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 318–324. https://doi.org/10.1007/s00253-002-1018-4
- Picone N., Mohammadi S. S., Waajen A. C., van Alen T. A., Jetten M. S.M., Pol A., Op den Camp H. J.M. More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV // Front. Microbiol. 2020. V. 11. Art. 604485. https://doi.org/10.3389/fmicb.2020.604485
- Prakash O., Nimonkar V., Shouche V. S. Practice and prospects of microbial preservation // FEMS Microbiol. Lett. 2013. V. 339. P. 1−9. https://doi.org/10.1111/1574-6968.12034
- Ramalingam V., Cupples A. M. Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 2255–2269. https://doi.org/10.1007/s00253-020-10376-7
- Rasheed M. A., Prasanna M. V., Kumar T. S., Patil D. J., Dayal A. M. Geomicrobial prospecting method for hydrocarbon exploration in Vengannapalli Village, Cuddapah Basin, India // Curr. Sci. India. 2008. V. 95. P. 361−366.
- Rasheed M. A., Lakshmi M., Srinu D., Dayal A. M. Bacteria as indicators for finding oil and gas reservoirs: a case study of the Bikaner-Nagaur Basin, Rajasthan, India // Pet. Sci. 2011. V. 8. P. 264−268. https://doi.org/10.1007/s12182-011-0143-z
- Rasheed M. A., Hasan S. Z., Rao P. L.S., Boruah A., Sudarshan V., Kumar B., Harinarayana T. The microbial activity in development of hydrocarbon microseepage: an indicator for oil and gas exploration // Geosci. J. 2013. V. 17. P. 329−338. https://doi.org/10.1007/s12303-013-0026-y
- Rasheed M. A., Hasan S. Z., Rao P. L.S., Boruah A., Sudarshan V., Kumar B., Harinarayana T. Application of geo-microbial prospecting method for finding oil and gas reservoirs // Front. Earth Sci. 2015. V. 9. P. 40–50. https://doi.org/10.1007/s11707-014-0448-5
- Rasmussen M. T., Saito A. M., Hyman M. R., Semprini L. Co-encapsulation of slow release compounds and Rhodococcus rhodochrous ATCC 21198 in gellan gum beads to promote the long-term aerobic cometabolic transformation of 1,1,1-trichloroethane, cis-1,2-dichloroethene and 1,4-dioxane // Environ. Sci. Process. Impacts. 2020. V. 22. P. 771–791. https://doi.org/10.1039/C9EM00607A
- Raymond D. R., Davis G. B. n-Alkane utilization and lipid formation by Nocardia // Appl. Microbiol. 1960. V. 8. P. 329−334. https://doi.org/10.1128/ am.8.6.329-334.1960
- Reddy C. M., Arey J. S., Seewald J. S., Sylva S. P. Lemkau K. L., Nelson R. K., Carmichael C. A., McIntyre C.P., Fenwick J., Ventura G. T., van Mooy B. A.S., Camilli R. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 20229−20234. https://doi.org/10.1073/pnas.1101242108
- Redmond M. C., Valentine D., Sessions A. L. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing // Appl. Environ. Microbiol. 2010. V. 76. P. 6412−6422. https://doi.org/10.1128/AEM.00271-10
- Redmond M. C., Valentine D. L. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 20292–20297. https://doi.org/10.1073/pnas.1108756108
- Sánchez O. Constructed wetlands revisited: microbial diversity in the -omics era // Microb. Ecol. 2017. V. 73. P. 722‒733. https://doi.org/10.1007/s00248-016-0881-y
- Sangal V., Goodfellow M., Jones A. L., Seviou, R.J., Sutcliffe I. C. Refined systematics of the genus Rhodococcus based on whole genome analyses // Biology of Rhodococcus / Ed. Alvarez H. M. Springer International Publishing, Cham, 2019. P. 1–21. https://doi.org/10.1007/978-3-030-11461-9_1
- Saunois M., Stavert A. R., Poulter B., Bousquet P., Canadell J. G., Jackson R. B. et al. The global methane budget 2000–2017 // Earth Syst. Sci. Data. 2020. V. 12. P. 1561–1623. https://doi.org/10.5194/essd-12-1561-2020
- Sayavedra-Soto L.A., Hamamura N., Liu C.-W., Kimbrel J. A., Chang J. H., Arp D. J. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family // Environ. Microbiol. Rep. 2011. V. 3. P. 390−396. https://doi.org/10.1111/j.1758-2229.2010.00239.x
- Seto M., Kimbara K., Shimura M., Hatta T., Fukuda M., Yano K. A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 1995. V. 61. P. 3353–3358.
- Seto N., Iizuka H. Microbiological studies on petroleum and natural gas. XI. A new hydrocarbon-utilizing actinomycete // J. Gen. Microbiol. 1970. V. 16. P. 127–135. https://doi.org/10.2323/jgam.16.2_127
- Sharp J. O., Sales C. M., LeBlanc J.C., Liu J., Wood T. K., Eltis L. D., Mohn W. W., Alvarez-Cohen L. An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 2007. V. 73. P. 6930‒6938. https://doi.org/10.1128/AEM.01697-07
- Sharp J. O., Sales C. M., Alvarez-Cohen L. Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two Actinomycetales // Biotechnol. Bioeng. 2010. V. 107. P. 924–932. https://doi.org/10.1002/bit.22899
- Sluis M. K., Sayavedra-Soto L.A., Arp D. J. Molecular analysis of the soluble butane monooxygenase from “Pseudomonas butanovora” // Microbiology (Reading). 2002. V. 148. P. 3617–3629. https://doi.org/10.1099/00221287-148-11-3617
- Smith D. Culture collections // Adv. Appl. Microbiol. 2012. V. 79. P. 73−118. https://doi.org/10.1016/B978-0-12-394318-7.00004-8
- Steffan R. J., McClay K., Vainberg S., Condee C. W., Zhang D. Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria // App. Environ. Microbiol. 1997. V. 63. P. 4216–4222. https://doi.org/10.1128/aem.63.11.4216-4222.1997
- Stephens G. M., Dalton H. The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria // J. Gen. Microbiol. 1986. V. 132. P. 2453–2462.https://doi.org/10.1099/00221287-132-9-2453
- Takahashi J., Ichkawa Y., Sagae H., Komuro I., Kanou H., Yamada K. Isolation and identification of n-butane-assimilating bacterium // Agric. Biol. Chem. 1980. V. 14. P. 1835−1840. https://doi.org/10.1080/00021369.1980.10864232
- Táncsics A., Benedek T., Szoboszlay S., Péter V. G., Milán F., István M., Márialigeti K., Kukolya J., Szabolcs L., Balázs K. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus // Syst. Appl. Microbiol. 2015. V. 38. P. 1‒7. https://doi.org/10.1016/j.syapm.2014.10.010
- Tausz J., Donath P. Űber die oxidation der wasserstoffe und kohlerwasserstoffs mittels bakterien // Z. Physiol. Chem. 1930. No. 90. P. 141−168. https://doi.org/10.1515/bchm2.1930.190.3-6.141
- Taylor S. W., Lollar S. B., Wassenaar L. I. Bacteriogenic ethane in near-surfaceaquifers: implications for leaking hydrocarbon well bores // Environ. Sci. Technol. 2000. V. 34. P. 4727–4732. https://doi.org/10.1021/es001066x
- Tucker J., Hitzman D. Detailed microbial surveys help improve reservoir characterization // Oil Gas J. 1994. V. 6. P. 65–69.
- Tupa P. R., Masuda H. Comparative proteomic analysis of propane metabolism in Mycobacterium sp. strain ENV421 and Rhodococcus sp. strain ENV425 // J. Mol. Microbiol. Biotechnol. 2018a. V. 28. P. 107–115. https://doi.org/10.1159/000490494
- Tupa P. R., Masuda H. Draft genome sequence of a propanotroph, Rhodococcus sp. strain ENV425, capable of degrading methyl tert-butyl ether and N-nitrosodimethylamine // Gen. Announc. 2018b. V. 6. Art. e00051-18. https://doi.org/10.1128/genomeA.00051-18
- Tupa P. R., Masuda H. Genomic analysis of propane metabolism in methyl tert-butyl ether-degrading Mycobacterium sp. strain ENV421 // J. Genomics. 2018с. V. 6. P. 24−28. https://doi.org/10.7150/jgen.24929
- Van Beilen J. B., Smits T. H., Roos F. F., Brunner T., Balada S. B., Röthlisberger M., Witholt B. Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases // J. Bacteriol. 2005. V. 187. P. 85–91. https://doi.org/10.1128/JB.187.1.85-91.2005
- Van Beilen J. B., Funhoft E. G. Alkane hydroxylases involved in microbial alkane degradation // Appl. Microbiol. Biotechnol. 2007. V. 76. P. 13−21. https://doi.org/10.1007/s00253-006-0748-0
- Van Ginkel C. G., Welten H. G.J., Hartmans S., de Bont J. A.M. Metabolism of trans-2-butene and butane in Nocardia TB1 // J. Gen. Microbiol. 1987a. V. 133. P. 1713−1720. https://doi.org/10.1099/00221287-133-7-1713
- Van Ginkel C. G., Welten H. G.J., de Bont J. A.M. Oxidation of gaseous and volatile hydrocarbons by selected alkene utilizing bacteria // Appl. Environ. Microbiol. 1987b. V. 53. P. 2903–2907. https://doi.org/10.1128/aem.53.12.2903-2907.1987
- Valentine D. L., Kessler J. D., Redmond M. C., Mendes S. D., Heintz M. B., Farwell C., Hu L., Kinnaman F. S., Yvon-Lewis S., Du M., Chan E. W., Tigreros F. G., Villanueva C. J. Propane respiration jump-starts microbial response to a deep oil spill // Science. 2010. V. 330. P. 208–211. https://doi.org/10.1126/science.1196830
- Verce M. F., Freeman D. L. Modelling the kinetics of vinyl chloride cometabolism by an ethane-grown Pseudomonas sp. // Biotechnol. Bioeng. 2000. V. 71. P. 274–285. https://doi.org/10.1002/1097-0290(2000)71:4<274::aid-bit1017>3.0.co;2-z
- Vestal J. R., Perry J. J. Divergent metabolic pathways for propane and propionate utilization by a soil isolate // J. Bacteriol. 1969. V. 99. P. 216−221. https://doi.org/10.1128/jb.99.1.216-221.1969
- Vestal J. R., Perry J. J. Effect of substrate on the lipids of the hydrocarbon utilizing Mycobacterium vaccae // Can. J. Microbiol. 1971. V. 17. P. 445−440. https://doi.org/10.1139/m71-075
- Vogt C., Song Z., Richnow H.-H., Musat F. Carbon and hydrogen stable isotope fractionation due to monooxygenation of short-chain alkanes by butane monooxygenase of Thauera butanivorans Bu-B1211 // Front. Microbiol. 2023. V. 14. Art. 1250308. https://doi.org/10.3389/fmicb.2023.1250308
- Volesky B., Zajic J. E. Ethane and natural gas oxidation by fungi // Dev. Ind. Microbiol. 1970. V. 11. P. 84–195.
- Wagner M., Wagner M., Piske J., Smit R. Case histories of microbial prospection for oil and gas, onshore and offshore in northwest Europe // Surface exploration case histories: applications of geochemistry, magnetics, and remote sensing / Eds. Schumacher D., LeSchack L.A. AAPG Studies in Geology no. 48 and SEG Geophysical References Series. 2002. No. 11. P. 453–479. https://doi.org/10.1306/St48794C19
- Woods N. R. The bacterial metabolism of propane. PhD thesis. University of Warwick. 1988.
- Woods N. R., Murrell J. C. The metabolism of propane in Rhodococcus rhodochrous PNKb1 // Microbiology (Reading). 1989. V. 135. P. 2335–2344. https://doi.org/10.1099/00221287-135-8-2335
- Wu M., Lai C.-Y., Wang Y., Yuan Z., Guo J. Microbial nitrate reduction in propane- or butane-based membrane biofilm reactors under oxygen-limiting conditions // Water Res. 2023. V. 235. Art. 119887. https://doi.org/10.1016/j.watres.2023.119887
- Wu X.-Y., Xu X.-M., Wu C.-F., Fu S.-Y., Deng M.-C., Feng L., Yuan J.-P., Wang J.-H. Responses of microbial communities to light-hydrocarbon microseepage and novel indicators for microbial prospecting of oil/gas in the Beihanzhuang Oilfield, northern Jiangsu, China // Geomicrobiol. J. 2014. V. 31. P. 697–707. https://doi.org/10.1080/01490451.2013.843619
- Yagi O., Hashimoto A., Iwasaki K., Nakajima M. Aerobic degradation of 1,1,1-trichloroethane by Mycobacterium spp. isolated from soil // Appl. Environ. Microbiol. 1999. V. 65. P. 4693–4696. https://doi.org/10.1128/AEM.65.10.4693-4696.1999
- Yuan Z. H., Zhang Y. Q., Zhao Q., Jiang H. F., Liu Y. Y., Luo Z. H., Li X., Wang S. T., Li B., Pan G. H., Gao X. Y., Zhang G. L. New progress of microbial prospecting of oil and gas in China: taking the satellite oilfield in Daqing as an example // Sci. China Earth Sci. 2009. V. 52. P. 152–158. https://doi.org/10.1007/s11430-009-5016-6
- Zhang C.-Y., He Z. H., Zhang S., Yin M.-Y., Ning Z., Liu Y.-C. A DNA-based analysis of a microbial technique for the prospecting of oil and gas applied to known oil field, China // Geomicrobiol. J. 2016. V. 34. P. 63‒70. https://doi.org/10.1080/01490451.2016.1139641
- Zhang F., She Y., Zheng Y., Zhou Z. F., Kong S. Q., Hou D. J. Molecular biologic techniques applied to the microbial prospecting of oil and gas in the Ban 876 gas and oil field in China // Appl. Microbiol. Biotechnol. 2010. V. 86. P. 1183–1194. https://doi.org/10.1007/s00253-009-2426-5
- Zhang Y., Tang X.-J., Shen B., Yu X.-J., Wang E.-T., Yuan H.-L. Identification and characterization of the butane-utilizing bacterium, Arthrobacter sp. PG-3-2, harboring a novel bmoX gene // Geomicrobiol. J. 2013. V. 30. P. 85−92. https://doi.org/10.1080/01490451.2011.653086
- Zhang Y., Deng C.-P., Shen B., Yang J.-S., Wang E.-T., Yuan H. L. Syntrophic interactions within a butane-oxidizing bacterial consortium isolated from Puguang gas field in China // Microb. Ecol. 2016. V. 72. P. 538–548. https://doi.org/10.1007/s00248-016-0799-4
- Zhou Q.-Z., Xu X.-M., Xu H., Zheng G.-Z., Pi W.-L., Jiang Y.-L., Xu X.-P., Li Y., Wang J.-H. Surface microbial geochemistry of the Beihanzhuang Oilfield, northern Jiangsu, China // J. Petrol. Sci. Engineer. 2020. V. 191. Art. 107140.https://doi.org/10.1016/j.petrol.2020.107140
- Zou B., Huang Y., Zhang P.-P., Ding X.-M., den Camp H. J.M.O., Quan Z.-X. Horizontal gene transfer of genes encoding copper-containing membrane-bound monooxygenase (CuMMO) and soluble di-iron monooxygenase (SDIMO) in ethane- and propane-oxidizing Rhodococcus bacteria // Appl. Environ. Microbiol. 2021. V. 87. Art. e00227-21. https://doi.org/10.1128/AEM.00227-21
Supplementary files
