Actinomycetes Rhodococcus ruber – Key and Universal Bioxidizers of Gaseous Alkanes C₂−C₄

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In recent years, there has been an increasing interest of researchers in microorganisms capable of oxidizing higher gaseous homologues of methane (ethane, propane, n-butane). Among propane- and butane-oxidizing bacteria, representatives of Rhodococcus ruber attract special attention; they can easily adapt to extreme environmental conditions and have significant potential for biotechnology. The review emphasizes the importance of R. ruber as a bioindicator of oil and gas fields and a component of microbial consortia for the degradation of hydrocarbons and other xenobiotics. Data on natural substrates and ecological niches of gas-oxidizing Rhodococcus are presented, their morphological and physiological features are described. Their role in biogeochemical cycles and the potential for industrial use are discussed. As a result of the analysis of functional genes and enzyme systems of gaseous hydrocarbon (C2−C4) catabolism, the key stages of propane oxidation in Rhodococcus were identified and the role of propanotrophy in the bioremediation potential of R. ruber was revealed. The need for further research to understand the mechanisms of adaptation of these microorganisms to anthropogenic impact was substantiated.

Full Text

Restricted Access

About the authors

I. B. Ivshina

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm National Research State University

Author for correspondence.
Email: ivshina@iegm.ru
Russian Federation, Perm, 614081; Perm, 614990

M. S. Kuyukina

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm National Research State University

Email: ivshina@iegm.ru
Russian Federation, Perm, 614081; Perm, 614990

A. V. Krivoruchko

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm National Research State University

Email: ivshina@iegm.ru
Russian Federation, Perm, 614081; Perm, 614990

E. A. Tyumina

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm National Research State University

Email: ivshina@iegm.ru
Russian Federation, Perm, 614081; Perm, 614990

References

  1. Богданова В. М. Физиологические свойства микроорганизмов, выделенных в атмосфере метана и пропана // Микробиология. 1966. Т. 35. № 2. С. 980−983.
  2. Бокова Е. Н. Окисление этана и пропана некоторыми видами микобактерий // Микробиология. 1954. Т. 23. № 1. С. 15−21.
  3. Глазачева Л. Е., Ившина И. Б., Оборин А. А. Клеточные приспособления Rhodococcus rhodochrous и Rhodococcus ruber, усваивающих пропан и н-бутан // Микробиология. 1990. Т. 59. № 2. С. 301−306.
  4. Губин В. М. Об усваивающих углеводороды бактериях Тамбуканской и Петровской грязи в связи с вопросом газообразования // Курортное дело. 1923. № 5. С. 58.
  5. Ившина И. Б. Состояние и проблемы развития специализированных центров микробиологических ресурсов в России. Обзор // Микробиология. 2012. Т. 81. С. 551−560.
  6. Ivshina I. B. Current situation and challenges of Specialized Microbial Resource Centers in Russia // Microbiology (Moscow). 2012. V. 81. P. 509−516. https://doi.org/10.1134/S0026261712050098
  7. Ившина И. Б., Оборин А. А., Нестеренко О. А., Касумова С. А. Бактерии рода Rhodococcus грунтовых вод района нефтяных месторождений // Микробиология. 1981. Т. 50. С. 709−716.
  8. Ившина И. Б., Нестеренко О. А. Глазачева Л. Е., Шеховцов В. П. Электронно-микроскопическое изучение факультативных газоиспользующих Rhodococcus rhodochrous // Микробиология. 1982. Т. 51. С. 477–481.
  9. Ившина И. Б., Пшеничнов Р. А., Оборин А. А. Пропанокисляющие родококки. Свердловск: УНЦ АН СССР, 1987. 125 с.
  10. Ившина И. Б., Бердичевская М. В., Зверева Л. В., Рыбалка Л. В., Еловикова Е. А. Фенотипическая характеристика алканотрофных родококков из различных экосистем // Микробиология. 1995. Т. 64. Вып. 4. C. 507–513.
  11. Ившина И.Б., Куюкина М. С. Селективное выделение пропанокисляющих родококков с использованием антибиотических веществ // Микробиология. 1997. Т. 66. С. 494−500.
  12. Ivshina I. B., Kuyukina M. S. Isolation of propane-oxidizing rhodococci on selective media with antibiotics // Microbiology (Moscow). 1997. V. 66. P. 413−418.
  13. Ившина И. Б., Пешкур Т. А., Коробов В. П. Эффективное извлечение цезия клетками бактерий рода Rhodococcus // Микробиология. 2002. Т. 71. P. 418–423.
  14. Ivshina I. B., Peshkur T. A., Korobov V. P. Efficient uptake of cesium ions by Rhodococcus cells // Microbiology (Moscow). 2002. V. 71. P. 357–361. https://doi.org/10.1023/a:1015875216095
  15. Ившина И. Б., Гришко В. В., Ноговицина Е. М., Кукина Т. П., Толстиков А. Г. Биотрансформация b-ситостерола и сложных эфиров β-ситостерола актинобактериями рода Rhodococcus // Прикл. биохим. микробиол. 2005. Т. 41. С. 626–633.
  16. Ivshina I. B., Grishko V. V., Nogovitsina E. M., Kukina T. P., Tolstikov A. G. Bioconversion of β-sitosterol and its esters by actinobacteria of the genus Rhodococcus // Appl. Biochem. Microbiol. 2005. V. 41. P. 551−557. https://doi.org/10.1007/s10438-005-0100-y
  17. Ившина И. Б., Каменских Т. Н., Анохин Б. А. Адаптационные механизмы выживания алканотрофных родококков, реализованные в неблагоприятных условиях среды // Вестник Пермского университета. Серия Биология. 2007. Вып. 5. № 10. С. 107‒112.
  18. Ившина И. Б., Куюкина М. С., Каменских Т. Н., Криворучко А. В., Тюмина Е. А., Елькин А. А. Углеводородокисляющие родококки: особенности биологической организации под воздействием экополлютантов. Атлас-монография // Под ред. И.Б. Ившиной. УрО РАН, 2021. 140 с. https://elibrary.ru/item.asp?id=46512049
  19. Коронелли Т. В. Принципы и методы интенсификации биологического разрушения углеводородов окружающей среды (обзор) // Прикл. биохим. микробиол. 1996. Т. 32. С. 579‒585.
  20. Koronelli T. V. Principles and methods for raising the efficiency of biological degradation of hydrocarbons in the environment: review // Appl. Biochem. Microbiol. 1996. V. 32. P. 519−525.
  21. Коршунова И. О., Писцова О. Н., Куюкина М. С., Ившина И. Б. Влияние органических растворителей на жизнеспособность и морфофункциональные свойства родококков // Прикл. биохим. микробиол. 2016. Т. 52. P. 53–61.
  22. Korshunova I. O., Pistsova O. N., Kuyukina M. S., Ivshina I. B. The effect of organic solvents on the vability and morphofunctional properties of Rhodococcus // Appl. Biochem. Microbiol. 2016. V. 52. P. 43–50. https://doi.org/10.1134/S0003683816010075
  23. Куликова А. К., Безбородов А. М. Усвоение пропана и свойства пропанмонооксигеназы из Rhodococcus erythropolis 3/89 // Прикл. биохим. микробиол. 2001. Т. 37. P. 186–189.
  24. Kulikova A. K., Bezborodov A. M. Assimilation of propane and characterization of propane monooxygenase from Rhodococcus erythropolis 3/89 // Appl. Biochem. Microbiol. 2001. V. 37. P. 164–167. https://doi.org/10.1023/A:1002827831098
  25. Куюкина М. С., Ившина И. Б., Рычкова М. И., Чумаков О. Б. Влияние состава клеточных липидов на формирование неспецифической антибиотикорезистентности алканотрофных родококков // Микробиология. 2000. Т. 69. С. 62‒69.
  26. Kuyukina M. S., Ivshina I. B., Ritchkova M. I., Chumakov O. B. Effect of cell lipid composition on the formation of nonspecific antibiotic resistance in alkanotrophic rhodococci // Microbiology (Moscow). 2000. V. 69. P. 51−57. https://doi.org/10.1007/BF02757257
  27. Могилевский Г. А. Микробиологические исследования в связи с газовой съемкой // Разведка недр. 1938. № 8‒9. С. 59‒66.
  28. Mogilevsky G. A. Microbiological investigations in connecting with gas surveying // Razvedka Nedr. 1938. V. 8. P. 59−68.
  29. Могилевский Г. А. Микробиологический метод поисков газовых и нефтяных залежей. М.‒Л.: Гостоптехиздат, 1953. 56 с.
  30. Оборин А. А., Стадник Е. В. Нефтегазопоиcковая геомикробиология. Екатеринбург: УрО РАН, 1996. 408 c.
  31. Патент РФ. 2002. № 2180276.
  32. Патент РФ. 2002. № 2193464.
  33. Патент РФ. 2013. № 2475542.
  34. Патент РФ. 2019. № 2707536.
  35. Патент РФ. 2023. № 2798871.
  36. Патент РФ. 2024. № 2818318.
  37. Патент США. 1972. № 3635796.
  38. Славнина Г. П. Термофильный вариант Mycobacterium luteum // Микробиология. 1962. Т. 31. № 5. С. 819.
  39. Смирнова З. С. Отношение метан- и пропанокисляющих бактерий к различным источникам азота // Микробиология. 1962. Т. 31. С. 980−983.
  40. Смирнова З. С., Таптыкова С. Д. Использование пропана и его производных некоторыми видами проактиномицетов // Микробиология. 1967. Т. 36. С. 381‒385.
  41. Телегина З. П. Видовой состав микроорганизмов, использующих бутан // Микробиология. 1966. Т. 35. С. 1059‒1063.
  42. Телегина З. П. Использование углеводородов микроорганизмами, выделенными на средах с алифатическими спиртами // Микробиология. 1968. Т. 37. P. 885−889.
  43. Aliakbari E., Tebyanian H., Hassanshahian M., Kariminik A. Degradation of alkanes in contaminated sites // Int. J. Adv. Biol. Biomed. Res. 2014. V. 2. P. 1620−1637.
  44. Amouric A., Verhe F., Auria R., Casalot L. Study of a hexane-degrading consortium in a biofilter and in liquid culture: biodiversity, kinetics and characterization of degrading strains // FEMS Microbiol. Ecol. 2006. V. 55. P. 239–247. https://doi.org/10.1111/j.1574-6941.2005.00017.x
  45. Amouric A., Quéméneur M., Grossi V., Liebgott P.-P., Auria R., Casalot L. Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete // J. Appl. Microbiol. 2010. V. 108. P. 1903–1916. https://doi.org/10.1111/j. 1365-2672. 2009. 04592.x
  46. Arp D. J. Butane metabolism by butane-grown “Pseudomonas butanovora” // Microbiology (Reading). 1999. V. 145. P. 1173−1180.https://doi.org/10.1099/13500872-145-5-1173
  47. Ashraf W., Murrell J. C. Purification and characterization of a NAD+-dependent secondary alcohol dehydrogenase from propane-grown Rhodococcus rhodochrous PNKb1 // Arch. Microbiol. 1990. V. 153. P. 163–168. https://doi.org/10.1007/BF00247815
  48. Ashraf W., Murrell J. C. Genetic, biochemical and immunological evidence for the involvement of two alcohol dehydrogenases in the metabolism of propane by Rhodococcus rhodochrous PNKb1 // Arch. Microbiol. 1992. V. 157. P. 488–492. https://doi.org/10.1007/BF00276767
  49. Ashraf W., Mihdhir A., Murrell J. C. Bacterial oxidation of propane // FEMS Microbiol. Lett. 1994. V. 122. P. 1–6. https://doi.org/10.1111/j.1574-6968.1994.tb07134.x
  50. Awala S. I., Gwak J.-H., Kim Y.-M., Kim S.-J., Strazzulli A., Dunfield P., Yoon H., Kim G.-J., Rhee S.-K. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone // ISME J. 2021. V. 15. P. 3636–3647. https://doi.org/10.1038/s41396-021-01037-2
  51. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M., Kubal M., Meyer F., Olsen G. J., Olson R., Osterman A. L., Overbeek R. A., McNeil L.K., Paarmann D., Paczian T., Parrello B., Pusch G. D., Reich C., Stevens R., Vassieva O., Vonstein V., Wilke A., Zagnitko O. The RAST Server: Rapid annotations using subsystems technology // BMC Genomics. 2008. V. 9. Art. 75.https://doi.org/10.1186/1471-2164-9-75
  52. Babu J. P., Brown L. R. New type of oxygenase involved in the metabolism of propane and isobutene // Appl. Environ. Microbiol. 1984. V. 48. P. 260–264. https://doi.org/10.1128/aem.48.2.260-264.1984
  53. Baptist J. N., Gholson R. K., Coon M. J. Hydrocarbon oxidation by a bacterial enzyme system: I. Products of octane oxidation // Biochim. Biophys. Acta. 1963. V. 69. P. 40–47. https://doi.org/10.1016/0006-3002(63)91223- x
  54. Bell C. H., Wong J., Parsons K., Semel W., McDonough J., Gerber K. First full-scale in situ propane biosparging for co-metabolic bioremediation of 1,4-dioxane // Ground Water Monit. Remed. 2022. V. 42. P. 54–66. https://doi.org/10.1111/gwmr.12511
  55. Bell K. S., Kuyukina M. S., Heidbrink S., Philp J. C., Aw D. W.J., Ivshina I. B., Christofi N. Identification and environmental detection of Rhodococcus species by 16S rDNA-targeted PCR // J. Appl. Microbiol. 1999. V. 87. P. 472−480. https://doi.org/10.1046/j.1365-2672.1999.00824.x
  56. Blevins W. T., Perry J. J. Metabolism of propane, n-propylamine, and propionate hydrocarbon-utilizing bacteria // J. Bacteriol. 1972. V. 112. P. 513−518.https://doi.org/10.1128/jb.112.1.513-518.1972
  57. Brettin T., Davis J. J., Disz T., Edwards R. A., Gerdes S., Olsen G. J., Olson R., Overbeek R., Parrello B., Pusch G. D., Shukla M., Thomason J. A., Stevens R., Vonstein V., Wattam A. R., Xia F. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes // Sci. Rep. 2015. V. 5. Art. 8635. https://doi.org/10.1038/srep08365
  58. Cappelletti M., Di Gennaro P., D’Ursi P., Orro A., Mezzelan A., Landini M., Fedi S., Frascari D., Presentato A., Zannoni D., Milanesi L. Genome sequence of Rhodococcus sp. strain BCP1, a biodegrader of alkanes and chlorinated compounds // Genome Announc. 2013. V. 1. Art. e00657-13. https://doi.org/10.1128/genomeA.00657-13
  59. Cappelletti M., Presentato A., Milazzo G., Turner R. J., Fedi S., Frascari D., Zannoni D. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes // Front. Microbiol. 2015. V. 6. Art. 393. https://doi.org/10.3389/fmicb.2015.00393
  60. Cappelletti M., Pinelli D., Fedia S., Zannonia D., Frascarib D. Aerobic co‐metabolism of 1,1,2,2‐tetrachloroethane by Rhodococcus aetherivorans TPA grown on propane: kinetic study and bioreactor configuration analysis // J. Chem. Technol. Biotechnol. 2018. V. 93. P. 155−165. https://doi.org/10.1002/jctb.5335
  61. Cappelletti M., Fedi S., Zannoni D. Degradation of alkanes in Rhodococcus // Biology of Rhodococcus / Ed. Alvarez H. M. Springer Nature, Switzerland, AG, 2019a. V. 16. P. 137−171. https://doi.org/10.1007/978-3-030-11461-9_6
  62. Catalogue of Strains of Regional Specialized Collection of Alkanotrophic Microorganisms [http://www.iegmcol/strains/index.html [25.06.2024].
  63. Cavicchioli R., Ripple W. J., Timmis K. N., Azam F., Bakken L. R., Baylis M., Behrenfeld M. J., Boetius A., Boyd P. W., Classen A. T., Crowther T. W., Danovar R., Foreman C. M., Huisman J., Hutchins D. A., Jansson J. K., Karl D. M., Koskella B., Welch D. B.M., Martiny J. B.H., Moran M. A., Orphan V. J., Reay D. S., Remais J. V., Rich V. I., Singh B. K., Stein L. Y., Stewart F. J., Sullivan M. B., van Oppen M. J.H., Weaver S. C., Webb E. A., Webster N. S. Scientists’ warning to humanity: microorganisms and climate change // Nat. Rev. Microbiol. 2019. V. 17. P. 569−586. https://doi.org/10.1038/s41579-019-0222-5
  64. Сerniglia C. E., Perry J. J. Crude oil degradation by microorganisms isolated from the marine environment // Z. Allg. Mikrobiol. 1973. V. 13. P. 299–306. https://doi.org/10.1002/jobm.3630130403
  65. Сerniglia C. E., Perry J. J. Metabolism of n-propylamine, isopropylamine, and 1,3-propane diamine by Mycobacterium convolutum // J. Bacteriol. 1975. V. 124. P. 285−289.https://doi.org/10.1128/jb.124.1.285-289.1975
  66. Chen Y., Ren H., Kong X., Wu H., Lu Z. A multicomponent propane monooxygenase catalyzes the initial degradation of methyl tert-butyl ether in Mycobacterium vaccae JOB5 // Appl. Environ. Microbiol. 2023. V. 89. Art. e01187-23. https://doi.org/10.1128/aem.01187-23
  67. Chidambarampadmavathy K., Obulisamy K., Heimann K. Role of copper and iron in methane oxidation and bacterial biopolymer accumulation // Engineer. Life Sci. 2015. V. 15. P. 387–399. https://doi.org/10.1002/elsc.201400127
  68. Coleman J. P., Perry J. J. Purification and characterization of the secondary alcohol dehydrogenase from propane-utilizing Mycobacterium vaccae strain JOB-5 // J. Gen. Microbiol. 1985. V. 131. P. 2901‒2907.
  69. Coleman N. V., Bui N. B., Holmes A. J. Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments // Environ. Microbiol. 2006. V. 8. P. 1228–1239. https://doi.org/10.1111/j.1462-2920.2006.01015.x
  70. Coleman N. V., Le N. B., Ly M. A., Ogawa H. E., McCarl V., Wilson N. L., Holmes A. L. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone // ISME J. 2012. V. 6. P. 171–182. https://doi.org/10.1038/ismej.2011.98
  71. Crombie A. T. The effect on lanthanum on growth and gene expression in a facultative methanotroph // Environ. Microbiol. 2022. V. 24. P. 596−613.
  72. https://doi.org/10.1111/1462-2920.15685
  73. Crombie A. T., Murrell J. C. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris // Nature. 2014. V. 510. P. 148–151.https://doi.org/10.1038/nature13192
  74. Currie F., Twigg M. S., Hudlesson N., Simons K. E., Marchaut R., Banat I. M. Biogenic propane production by a marine Photobacterium strain isolated from the Westen English Channel // Front. Microbiol. 2022. V. 13. Art. 1000247. https://doi.org/10.3389/fmicb.2022.1000247
  75. Davis J. B. Cellular lipids of a Nocardia grown on propane and n-butane // Appl. Microbiol. 1964. V. 12. P. 301–304. https://doi.org/10.1128/am.12.4.301-304.1964
  76. Davis J. B., Chase H. H., Raymond R. L. Mycobacterium paraffinicum n. sp. a bacterium isolated from soil // Appl. Microbiol. 1956. V. 4. P. 310−315. https://doi.org/10.1128/am.4.6.310-315.1956
  77. Davis J.B, Raymond R. L. Oxidation of alkyl-substituted cyclic hydrocarbons by a nocardia during growth on n-alkanes // Appl. Microbiol. 1961. V. 9. P. 383‒388.https://doi.org/10.1128/am.9.5.383-388.1961
  78. Davies J. S., Wellman A. M., Zajic J. E. Hyphomycetes utilizing natural gas // Can. J. Microbiol. 1973. V. 19. P. 81–85. https://doi.org/10.1139/m73-012
  79. de Carvalho C. C.C.R. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions // Res. Microbiol. 2012. V. 163. P. 125–136. https://doi.org/10.1016/j.resmic.2011.11.003
  80. de Carvalho C. C.C.R., Costa S. S., Fernandes P., Couto I., Viveiros M. Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus // Front. Physiol. 2014. V. 5. Art. 133. https://doi.org/10.3389/fphys.2014.00133
  81. Declerck S. W.A., van der Heijden M. G.A., Varese G. C., Turkovskaya O. V., Evtushenko L. I., Ivshina I. B., Desmeth P. PERN: An EU-Russia initiative for rhizosphere microbial resources // Trends Biotechnol. 2015. V. 33. P. 377–380. https://doi.org/10.1016/j.tibtech.2015.03.005
  82. Dedysh S. N., Knief C., Dunfield P. F. Methylocella species are facultatively methanotrophic // J. Bacteriol. 2005. V. 187. P. 4665−4670. https://doi.org/10.1128/JB.187.13.4665−4670.2005
  83. Deng C., Yu X., Yang J., Li B., Sun W., Yuan H. J. Universal indicators for oil and gas prospecting based on bacterial communities shaped by light-hydrocarbon microseepage in China // Microbiol. Biotechnol. 2016. V. 26. P. 1320−1332. https://doi.org/10.4014/jmb.1602.02045
  84. Deng D., Li F., Li M. A novel propane monooxygenase initiating degradation of 1,4-dioxane by Mycobacterium dioxanotrophicus PH-06 // Environ. Sci. Technol. Lett. 2018. V. 5. P. 86–91.https://doi.org/10.1021/acs.estlett.7b00504
  85. Deng Y., Deng C., Yang J., Li B., Wang E., Yuan H. Novel butane-oxidizing bacteria and diversity of bmoX genes in Puguang gas field // Front. Microbiol. 2018. V. 9. Art. 1576. https://doi.org/10.3389/fmicb.2018.01576
  86. Desmeth P., Bosschaerts М. The necessary adaptation of culture collections to the new socioeconomic environment at global level // Microbial diversity: current situation, conservation strategy and biotechnological potential / Proc. 3rd int. conf. “Microbial Diversity: Current Situation, Conservation Strategy and Biotechnological Potential”. Eds. Ivshina I. B., Kuyukin, M.S., Kamenskikh T. N., Alfimova L. A. Perm, 2008. P. 144–146.
  87. Dubbels B. L., Sayavedra-Soto L.A., Bottoml P. J., Arp D. J. Thauera butanivorans sp. nov., a C2−C9 alkane-oxidizing bacterium previously referred to as “Pseudomonas butanovora” // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 1576−1578. https://doi.org/10.1099/ijs.0.000638-0
  88. Dubinsky E. A., Conrad M. E., Chakraborty R., Bill M., Borglin S. E., Hollibaugh J. T., Mason O. U., Piceno Y. M., Reid F. C., Stringfellow W. T., Tom L. M., Hazen T. C., Andersen G. L. Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the gulf of Mexico // Environ. Sci. Technol. 2013. V. 47. P. 10860–10867. https://doi.org/10.1021/es401676y
  89. Dunlap K. R., Perry J. J. Effect of substrate on the fatty acid composition of hydrocarbon-utilizing microorganisms // J. Bacteriol. 1967. V. 94. P. 1919−1924. https://doi.org/10.1128/jb.94.6.1919-1923.1967
  90. Dworkin M., Foster J. W. Experiments with some microorganisms with utilize ethane and hydrogen // J. Bacteriol. 1958. V. 75. P. 502−603. https://doi.org/10.1128/jb.75.5.592−603.1958
  91. Eshghdoostkhatami Z., Cupples A. M. Occurrence of Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA across microbial communities and their enumeration during 1,4-dioxane biodegradation // J. Microbiol. Methods. 2024. V. 219. Art. 106908. https://doi.org/10.1016/j.mimet.2024.106908
  92. Etiope G., Klusman R. W. Geologic emissions of methane to the atmosphere // Chemosphere. 2002. V. 49. P. 777−789. https://doi.org/10.1016/s0045-6535(02)00380-6
  93. Etiope G., Ciccioli P. Earth’s degassing: a missing ethane and propane source // Science. 2009. V. 323. Art. 478. https://doi.org/10.1126/science.1165904
  94. Etiope G., Feyzullayev A., Baciu C. L. Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin // Mar. Pet. Geol. 2009. V. 36. P. 333–344. https://doi.org/10.1016/j.marpetgeo.2008.03.001
  95. Farhan Ul Haque M., Crombie A. T., Murrell J. C. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps // Microbiome. 2019. V. 7. Art. 134. https://doi.org/10.1186/s40168-019-0741-3
  96. Farhan Ul Haque M., Hernández M., Crombie A. T., Murrell J. C. Identification of active gaseous-alkane degraders at natural gas seeps // ISME J. 2022. V. 16. P. 1705–1716. https://doi.org/10.1038/s41396-022-01211-0
  97. Ferrari E., di Benedetto G., Firrincieli A., Presentato A., Frascari D., Cappelletti M. Unravelling the role of the group 6 soluble di-iron monooxygenase (SDIMO) SmoABCD in alkane metabolism and chlorinated alkane degradation // Microbial. Biotechnol. 2024. V. 17. Art. e14453. https://doi.org/10.1111/1751-7915.14453
  98. Frascari D., Pinelli D., Nocentini M., Fedi S., Pii Y., Zannoni D. Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1 // Appl. Microbiol. Biotechnol. 2006. V. 73. P. 421–428. https://doi.org/10.1007/s00253-006-0433-3
  99. Frascari D., Pinelli D., Nocentini M., Baleani E., Cappelletti M., Fedi S. A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp. PB1 // Biochem. Engineer. J. 2008. V. 42. P. 139–147. https://doi.org/10.1016/j.bej.2008.06.011
  100. Gerrich H., Lascarro J. F., Sengupta S., Daly E., Nemerow N., Wong K. Characterization of gas produced by the anaerobic digestion of municipal solid waste – Alternative energy sources, 3. Proc. 3. Washington. 1983. V. 7. P. 291−299.
  101. Goff K. L., Hug L. A. Environmental potential for microbial 1,4-dioxane degradation is sparse despite mobile elements playing a role in trait distribution // Appl. Environ. Microbiol. 2022. V. 88. Article e02091–e02021. https://doi.org/10.1128/aem.02091-21
  102. Haase K., Wendlandt K.-D., Gräber A., Stottmeister U. Cometabolic degradation of MTBE using methane-propane- and butane-utilizing enrichment cultures and Rhodococcus sp. BU3 // Engineer. Life Sci. 2006. V. 6. P. 508–513. https://doi.org/10.1002/elsc.200520144
  103. Hamamura N., Page C., Long T., Semprini L., Arp D. J. Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane grown Methylosinus trichosporium OB3b // Appl. Environ. Microbiol. 1997. V. 63. P. 3607–3613. https://doi.org/10.1128/aem.63.9.3607-3613.1997
  104. Hamamura N., Storfa R. T., Semprini L., Arp D. J. Diversity in butane monooxygenases among butane-grown bacteria // Appl. Environ. Microbiol. 1999. V. 65. P. 4586−4593. https://doi.org/10.1128/AEM.65.10.4586-4593.1999
  105. Hamamura N., Chris M. Yeager C. M., Arp D. J. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8 // Appl. Environ. Microbiol. 2001. V. 67. P. 4992−4998. https://doi.org/10.1128/AEM.67.11.4992–4998.2001
  106. Hara H., Stewart G. R., Mohn W. W. Involvement of a novel ABC transporter and monoalkyl phthalate ester hydrolase in phthalate ester catabolism by Rhodococcus jostii RHA1 // Appl. Environ. Microbiol. 2010. V. 76. P. 1516–1523. https://doi.org/10.1128/AEM.02621-09
  107. Haußmann U., Wolters D. A., Fränzel B., Eltis L. D., Poetsch A. Physiological adaptation of the Rhodococcus jostii RHA1 membrane proteome to steroids as growth substrates // J. Proteome Res. 2013. V. 12. P. 1188–1198. https://doi.org/10.1021/pr300816n
  108. Hazen T. C., Dubinsky E. A., DeSantis T.Z., Andersen G. L., Piceno Y. M., Singh N., Jansson J. K., Probst A., Borglin S. E., Fortney J. L., Stringfellow W. T., Bill M., Conrad M. E., Tom L. M., Chavarria K. L., Alusi T. R., Lamendella R., Joyner D. C., Spier C., Baelum J., Auer M., Zemla M. L., Chakraborty R., Sonnenthal E. L., D’haeseleer P., Holman H.-Y.N., Osman S., Lu Z., van Nostrand J. D., Deng Y., Zhou J., Mason O. U. Deep-sea oil plume enriches indigenous oil-degrading bacteria // Science. 2010. V. 330. P. 204‒211. https://doi.org/10.1126/science.1196830
  109. Heiss-Blanquet S., Benoit Y., Maréchaux C., Monot F. Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR // J. Appl. Microbiol. 2005. V. 99. P. 1392−1403. https://doi.org/10.1111/j.1365-2672.2005.02715.x
  110. Hinrichs K.-U., Hayes J. M., Bach W., Spivack A. J., Hmelo L. R., Holm N. G., Johnson C. G., Silva S. P. Biological formation of ethane and propane in the deep marine subsurface // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 14684−14689. https://doi.org/10.1073/pnas.0606535103
  111. Horvitz L. Vegetation and geochemical prospecting for petroleum // Bull. Amer. Assoc. Petrol. Geol. 1972. V. 56. P. 925−940.
  112. Hou C. T., Patel R., Laskin A. I., Barnabe N., Barist I. Epoxidation of short-chain alkenes by resting-cell suspensions of propane-grown bacteria // Appl. Environ. Microbiol. 1983a. V. 46. P. 171 – 177. https://doi.org/10.1128/aem.46.1.171-177.1983
  113. Hou C. T., Patel R. N., Laskin A. I., Barnab N., Baris I. Production of methyl ketones from secondary alcohols by cell suspensions of C2 to C4 n-alkane-grown bacteria // Appl. Environ. Microbiol. 1983b. V. 46. P. 178–184. https://doi.org/10.1128/aem.46.1.178−184.1983
  114. Huizenga J. M., Semprini L. Influence of growth substrate and contaminant mixtures on the degradation of BTEX and MTBE by Rhodococcus rhodochrous ATCC strain 21198 // Biodegradation. 2023. V. 34. P. 461–475. https://doi.org/10.1007/s10532-023-10037-2
  115. Ivshina I. B., Kuyukina M. S., Philp J. C., Christofi N. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species // World J. Microbiol. Biotechnol. 1998. V. 14. P. 711–717. https://doi.org/10.1023/A:1008885309221
  116. Ivshina I. B., Kuyukina M. S. Turning Russian specialized microbial culture collections into resource centers for biotechnology // Trends Biotechnol. 2013. V. 31. P. 609−611. https://doi.org/org/10.1016/j.tibtech.2013.08.002
  117. Ivshina I. B., Kuyukina M. S., Krivoruchko A. V., Plekhov O. A., Naimark O. B., Podorozhko E. A., Lozinsky V. I. Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust // Appl. Microbiol. Biotechnol. 2013. V. 97. P. 5315−5327. https://doi.org/10.1007/s00253-013-4869-y
  118. Ivshina I., Kostina L., Krivoruchko A., Kuyukina M., Peshkur T., Anderson P., Cunningham C. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231 // J. Hazard. Mater. 2016. V. 312. P. 8–17. https://doi.org/10.1016/j.jhazmat.2016.03.007
  119. Ivshina I. B., Kuyukina M. S., Krivoruchko A. V. Hydrocarbon-oxidizing bacteria and their potential in eco-biotechnology and bioremediation // Microbial resources: from functional existence in nature to industrial applications / Ed. Kurtböke I. New York: Elsevier, 2017. P. 121–148. https://doi.org/10.1016/B978-0-12-804765-1.00006-0
  120. Ivshina I. B., Kuyukina M. S. Specialized microbial resource centers: a driving force of the growing bioeconomy // Microbial resource conservation / Eds. Sharma, S.K., Varma, A. Springer International Publishing AG, part of Springer Nature, 2018. V. 54. P. 111−140. https://doi.org/10.1007/978-3-319-96971-8_4
  121. Ivshina I. B., Tyumina E. A., Kuzmina M. V., Vikhareva E. V. Features of diclofenac biodegradation by Rhodococcus ruber IEGM 346 // Sci. Rep. 2019. V. 9. Art. 9159. https://doi.org/10.1038/s41598-019-45732-9
  122. Ivshina I. B., Kuyukina M. S., Krivoruchko A. V., Tyumina E. A. Responses to ecopollutants and pathogenization risks of saprotrophic Rhodococcus species // Pathogens. 2021. V. 10. Art. 974. https://doi.org/10.3390/pathogens10080974
  123. Ivshina I., Bazhutin G., Tyumina E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: through the past into the future // Front. Microbiol. 2022. V. 13. Art. 967127. https://doi.org/10.3389/fmicb.2022.967127
  124. Ivshina I. B., Kuyukina M. S., Krivoruchko A. V. Draft genome sequence of propane- and butane-oxidizing Rhodococcus ruber IEGM 333 able to accumulate cesium // Microbiol. Resour. Announc. 2024a. Art. e00101-24. https://doi.org/10.1128/mra.00101-24
  125. Ivshina I. B., Kuyukina M. S., Krivoruchko A. V. Extremotolerant Rhodococcus as an important resource for environmental biotechnology // Actinomycetes in marine and extreme environments: unexhausted sources for microbial biotechnology / Ed. Kurtböke I. Boca Raton: Science Publishers, CRC Press, 2024b. P. 209−246.https://doi.org/10.1201/9780429293948
  126. Ivshina I. B., Kuyukina M. S., Litvinenko L. V., Golysheva A. A., Kostrikina N. A., Sorokin V. V., Mulyukin A. L. Bioaccumulation of molybdate ions by alkanotrophic Rhodococcus leads to significant alterations in cellular ultrastructure and physiology // Ecotoxicol. Environ. Saf. 2024c. V. 274. Art. 116190. https://doi.org/10.1016/j.ecoenv.2024.116190
  127. Iwabuchi N., Sharma P. K., Sunairi M., Kishi E., Sugita K., van der Mei H. C., Nakajima M., Busscher H. J. Role of interfacial tensions in the translocation of Rhodococcus erythropolis during growth in a two phase culture // Environ. Sci. Technol. 2009. V. 43. P. 8290–8294. https://doi.org/10.1021/es901208s
  128. Jaekel U., Vogt C., Fischer A., Richnow H. H., Musat F. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria // Environ. Microbiol. 2014. V. 16. P. 130–140. https://doi.org/10.1111/1462-2920.12251
  129. Ji Y., Mao G., Wang Y., Bartiam M. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases // Front. Microbiol. 2013. V. 14. Art. 58. https://doi.org/10.3389/fmicb.2013.00058
  130. Johnson E. L., Hyman M. R. Propane and n-butane oxidation by Pseudomonas putida GPo1 // Appl. Environ. Microbiol. 2006. V. 72. P. 950–952. https://doi.org/10.1128/AEM.72.1.950-952.2006
  131. Jurtshuk P., Cardini G. E. The mechanism of hydrocarbon oxidation by a Corynebacterium species // Crit. Rev. Microbiol. 1971. V. 1. P. 239–289.
  132. Kester A. S., Foster J. W. Diterminal oxidation of long-chain alkanes by bacteria // J. Bacteriol. 1963. V. 85. P. 859‒869.
  133. Kikukawa H., Koyasu R., Yasohara Y., Ito N., Mitsukura K., Yoshida T. Asymmetric oxidation of 1,3-propanediols to chiral hydroxyalkanoic acids by Rhodococcus sp. 2N // Biosci. Biotechnol. Biochem. 2019. V. 83. P. 768–773. https://doi.org/10.1080/09168451.2018.1559031
  134. Kormendy A. C., Wayman M. Characteristic cytoplasmic structures in microorganisms utilizing n-butane and 1-butanol // Can. J. Microbiol. 1974. V. 20. P. 225–230. https://doi.org/10.1139/m74-035
  135. Kotani T., Yamamoto T., Yurimoto H., Sakai Y., Kato N. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5 // J. Bacteriol. 2003. V. 185. P. 7120–7128. https://doi.org/10.1128/jb.185.24.7120-7128.2003
  136. Kotani T., Kawashima Y., Yurimoto H., Kato N., Saki Y. Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7 // J. Biosci. Bioeng. 2006a. V. 102. P. 184–192. https://doi.org/10.1263/jbb.102.184
  137. Kotani T., Yurimoto H., Kato N., Sakai Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5 // J. Bacteriol. 2006b. V. 189. P. 886‒893.https://doi.org/10.1128/JB.01054-06
  138. Krivoruchko A. V., Kuyukina M. S., Peshkur T. A., Cunningham C. J., Ivshina I. B. Rhodococcus strains from the Specialized Collection of Alkanotrophs for biodegradation of aromatic compounds // Molecules. 2023. V. 28. Art. 2393. https://doi.org/10.3390/molecules2805239
  139. Kulig J. K., Spandolf C., Hyde R., Ruzzini A. C., Eltis L. D., Grönberg G., Hayes M. A., Grogan G. A P450 fusion library of heme domains from Rhodococcus jostii RHA1 and its evaluation for the biotransformation of drug molecules // Bioorg. Med. Chem. 2015. V. 23. P. 5603–5609.https://doi.org/10.1016/j.bmc.2015.07.025
  140. Kurth E. G., Doughty D. M., Bottomley P. J., Arp D. J., Sayavedra-Soto L.A. Involvement of BmoR and BmoG in n-alkane metabolism in “Pseudomonas butanovora” // Microbiology (Reading). 2008. V. 154. P. 139–147. https://doi.org/10.1099/mic.0.2007/012724-0
  141. Kuyukina M. S., Glebov G. G., Ivshina I. B. Effects of nickel nanoparticles on Rhodococcus surface morphology and nanomechanical properties // Nanomaterials. 2022. V. 12. Art. 951. https://doi.org/ 10.3390/nano12060951
  142. Laczi K., Kis Á., Horváth B., Maróti G., Hegedüs B., Perei K., Rákhely G. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons // Appl. Microbiol. Biotechnol. 2015. V. 99. P. 9745–9759.https://doi.org/10.1007/s00253-015-6936-z
  143. Lai C.-Y., Wu M., Lu X., Wang Y., Yuan Z., Guo J. Microbial perchlorate reduction driven by ethane and propane // Environ. Sci. Technol. 2021. V. 55. P. 2006–2015. https://doi.org/10.1021/acs.est.0c04103
  144. Lakshmi M., Rasheed M. A., Madhavi T., Rajeswara Reddy B., Kalpana M. S., Patil D. J., Daval A. M. Geochemical exploration for hydrocarbons in the soils of southeast of Krishna-Godavari Basin, Andhra Pradesh // J. Geol. Soc. India. 2012. V. 80. P. 641−652. https://doi.org/10.1007/s12594-012-0190-0
  145. Li J.-L., Zhai X., Chen R., Wu Y.-C., Zhang H.-H. Occurrence and emission of non-methane hydrocarbons in the East China Sea: roles of phytoplankton assemblages // Environ. Chem. 2021. V. 18. P. 247−260. https://doi.org/10.1071/EN210660
  146. Linton J. D., Godley A. R., Bailey M. L., Barnes L. J. Growth of an ethane-utilizing mixed culture in a chemostat // J. Appl. Bacteriol. 1980. V. 48. P. 341–347. https://doi.org/10.1111/J.1365-2672.1980.TB01021.X
  147. Lippincott D., Streger S. H., Schaefer C. E., Hinkle J., Stormo J., Steffan R. J. Bioaugmentation and propane biosparging for in situ biodegradation of 1,4-dioxane // Ground Water Monit. Remed. 2015. V. 35. P. 81–92. https://doi.org/10.1111/gwmr.12093
  148. Liu C., Zhang L., Yu H., Zhang H., Niu H., Gai J. Bioreduction of Cr(VI) using a propane-based membrane biofilm reactor // Environ. Sci. Pollut. Res. 2023. V. 30. P. 32683–32695. https://doi.org/10.1007/s11356-022-24146-7
  149. Luk A. W.S., Beckmann S., Manefield M. Depedency of DNA extraction efficiency on cell concentration confounds molecular quantification of microorganisms in groundwater // FEMS Microbiol. Ecol. 2018. V. 94. Art. 146. https://doi.org/10.1093/femsec/fiy146
  150. Lukins H. B., Foster J. W. Methyl ketone metabolism in hydrocarbon-utilizing mycobacteria // J. Bacteriol. 1963. V. 85. P. 1074−1087. https://doi.org/10.1128/jb.85.5.1074-1087.1963
  151. MacMichael G.J., Brown L. R. Role of carbon dioxide in catabolism of propane by “Nocardia paraffinicum” (Rhodococcus rhodochrous) // Appl. Environ. Microbiol. 1987. V. 53. P. 65–69. https://doi.org/10.1128/aem.53.1.65-69.1987
  152. Madeira F., Madhusoodanan N., Lee J., Eusebi A., Niewielska A., Tivey A. R.N., Lopez R., Butcher S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024 // Nucl. Acids Res. 2024. Art. gkae241. https://doi.org/10.1093/nar/gkae241
  153. Malachowsky K. J., Phelps T. J., Teboli A. B., Minnikin D. E., White D. C. Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species // Appl. Environ. Microbiol. 1994. V. 60. P. 542–548. https://doi.org/10.1128/aem.60.2.542-548.1994
  154. Masai E., Yamada A., Healy J. M., Hatta T., Kimbara K., Fukuda M., Yano K. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 1995. V. 61. P. 2079–2085. https://doi.org/10.1128/aem.61.6.2079-2085.1995
  155. Mason O. U., Hazen T. C., Borglin S., Chain P. S.G., Dubinsky E. A., Fortney J. L., Han J., Holman H.-Y.N., Hultman J., Lamendella R., Mackelprang R., Malfatti S., Tom L. M., Tringe S. G., Woyke T., Zhou J., Rubin E. M., Jansson J. K. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill // ISME J. 2012. V. 6. P. 1715–1727. https://doi.org/10.1038/ismej.2012.59
  156. Mason O. U., Han J., Woyke T., Jansson J. K. Single-cell genomics reveals features of a Colwella species that was dominant during the Deepwater Horison oil spill // Front. Microbiol. 2014. V. 5. Art. 332. https://doi.org/10.3389/FMICB.2014.00332
  157. Mazzini A., Sciarra A., Etiope G., Sadavarte P., Houweling S., Pandey S., Husein A. Relevant methane emission to the atmosphere from a geological gas manifestation // Sci. Rep. 2021. V. 11. Art. 4138. https://doi.org/10.1038/s41598-021-83369-9
  158. McAuliffe C. Solubility in water of C1−С9 hydrocarbons // Nature. 1963. V. 200. P. 1092−1093. https://doi.org/10.1038/1001092A0
  159. McLee A.G., Kormendy A. C., Wayman M. Isolation of n-butane-utilizing organisms // Can. J. Microbiol. 1972. V. 18. P. 1191–1195. https://doi.org/10.1139/m72-186
  160. McLeod M.P., Warren R. L., Hsiao W. W., Araki N., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A. L., Wang D., Dosanjh M., Hara H., Petrescu A., Morin R. D., Yang G., Stott J. M., Schein J. E., Shin H., Smailus D., Siddiqui A. S., Marra M. A., Jones S. J., Holt R., Brinkman F. S., Miyauchi K., Fukuda M., Davies J. E., Mohn W. W., Eltis L. D. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 15582−15587. https://doi.org/10.1073/pnas.0607048103
  161. Miao Y., Heintz M. B., Bell C. H., Johnson N. W., Polasko A. L., Favero D., Mahendra S. Profiling microbial community structures and functions in bioremediation strategies for treating 1,4-dioxane-contaminated groundwater // J. Hazar. Mater. 2021. V. 408. Art. 124457. https://doi.org/10.1016/j.jhazmat.2020.124457
  162. Microbial Resource Conservation, Soil Biology. Eds. Sharma S. K., Varma A. Springer International Publishing AG. Part of Springer Nature, 2018. https://doi.org/10.1007/978-3-319-96971-8_4
  163. Miqueletto P. B., Andreote F. D., Dias A. C.F., Ferreira J. C., Dos Santos Neto E. V., de Oliveira V. M. Cultivation-independent methods applied to the microbial prospection of oil and gas in soil from a sedimentary basin in Brazil // AMB Express. 2011. V. 1. Art. 35. https://doi.org/10.1186/2191-0855-1-35
  164. Moreno Horn M., Garbe L.-A., Tressl R., Adrian L., Görisch H. Biodegradation of bis(1-chloro-2-propyl) ether via initial ether scission and subsequent dehalogenation by Rhodococcus sp. strain DTB // Arch. Microbiol. 2003. V. 179. P. 234–241.https://doi.org/10.1007/s00203-003-0522-y
  165. Moreno R., Rojo F. Enzymes for aerobic degradation of alkanes in bacteria // Aerobic utilization of hydrocarbons, oils, and lipids / Ed. Rojo F. Springer International Publishing, Cham. 2019. P. 117–142. https://doi.org/10.1007/978-3-319-50418-6_6
  166. Murrell J. C., McDonald I.R., Gilbert B. Regulation of expression of methane monooxygenases by copper ions // Trends Microbiol. 2000. V. 8. P. 221–225. https://doi.org/10.1016/S0966-842X(00)01739-X
  167. Mutnuri L., Rasheed M. A., Madhavi T., Reddy R., Kalpana M. S., Patil D. J., Dayal A. Geochemical exploration for hydrocarbons in the soils of southeast of Krishna-Godavari Basin, Andhra Pradesh // J. Geolog. Soc. India. 2012. V. 80. P. 641−652. https://doi.org/10.1007/s12594-012-0190-0
  168. Neumann G., Veeranagouda Y., Karegoudar T. B., Sahin O., Mäusezahl I., Kabelitz N., Kappelmeyer U., Heipieper H. J. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size // Extremophiles. 2005. V. 9. P. 163–168. https://doi.org/10.1007/s00792-005-0431-x
  169. Onodera M., Ogasawara N. Propane oxidation activity and its induction in a gaseous hydrocarbon assimilating mold Scedosporium sp. A-4 // Agric. Biol. Chem. 1990. V. 54. P. 731‒736.
  170. Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., Edwards R. A., Gerdes S., Parrello B., Shukla M., Vonstein V., Wattam A. R., Xia F., Stevens R. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) // Nucl. Acids Res. 2014. V. 42. Database issue. D206–D214. https://doi.org/10.1093/nar/gkt1226
  171. Overmann J. Significance and future role of microbial resource centers // Syst. Appl. Microbiol. 2015. V. 38. P. 258−265. https://doi.org/10.1016/j.syapm.2015.02.008
  172. Pabst G. S. Brown L. R. The role of isopropyl alcohol in the microbial metabolism of propane // Dev. Ind. Microbiol. 1968. V. 9. P. 394–400.
  173. Padda R. S., Pandey K. K., Kaul S., Nair V. D., Jain R. K., Basus S. K., Chakrabarti T. A novel gene encoding a 54 kDa polypeptide is essential for butane utilization by Pseudomonas sp. IMT37 // Microbiology (Reading). 2001. V. 147. P. 2479−2491. https://doi.org/10.1099/00221287-147-9-2479
  174. Pandey K. K., Mayilraj S., Chakrabarti T. Pseudomonas indica sp. nov., a novel butane-utilizing species // Int. J. Syst. Evol. Microbiol. 2002. V. 52. P. 1559–1567.https://doi.org/10.1099/00207713-52-5-1559
  175. Patel N. R., Hou C. T., Laskin A. I., Felix A., Derelanko P. Oxidation of alkanes by organisms grown on C2−C4 alkanes // J. Appl. Biochem. 1983. V. 5. P. 107−120.
  176. Perry J. J. Propane utilization by microorganisms // Adv. Appl. Microbiol. 1980. V. 26. P. 89−115. https://doi.org/10.1016/S0065-2164(08)70331-9
  177. Pen Y., Zhang Z. J., Morales-García A.L., Mears M., Tarmey D. S., Edyvean R. G., Banwart S. A., Geoghegan M. Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus // Biochim. Biophys. Acta. 2015. V. 1848. P. 518–526. https://doi.org/10.1016/j.bbamem.2014.11.007
  178. Phillips W. E., Perry J. J. Metabolism of n-butane and 2-butanone by Mycobacterium vaccae // J. Bacteriol. 1974. V. 120. P. 987−989. https://doi.org/10.1128/jb.120.2.987-989.1974
  179. Philp J. C., Kuyukina M. S., Ivshina I. B., Dunbar S. A., Christofi N., Lang S., Wray V. Alkanotrophic Rhodococcus ruber as a biosurfactant producer // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 318–324. https://doi.org/10.1007/s00253-002-1018-4
  180. Picone N., Mohammadi S. S., Waajen A. C., van Alen T. A., Jetten M. S.M., Pol A., Op den Camp H. J.M. More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV // Front. Microbiol. 2020. V. 11. Art. 604485. https://doi.org/10.3389/fmicb.2020.604485
  181. Prakash O., Nimonkar V., Shouche V. S. Practice and prospects of microbial preservation // FEMS Microbiol. Lett. 2013. V. 339. P. 1−9. https://doi.org/10.1111/1574-6968.12034
  182. Ramalingam V., Cupples A. M. Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 2255–2269. https://doi.org/10.1007/s00253-020-10376-7
  183. Rasheed M. A., Prasanna M. V., Kumar T. S., Patil D. J., Dayal A. M. Geomicrobial prospecting method for hydrocarbon exploration in Vengannapalli Village, Cuddapah Basin, India // Curr. Sci. India. 2008. V. 95. P. 361−366.
  184. Rasheed M. A., Lakshmi M., Srinu D., Dayal A. M. Bacteria as indicators for finding oil and gas reservoirs: a case study of the Bikaner-Nagaur Basin, Rajasthan, India // Pet. Sci. 2011. V. 8. P. 264−268. https://doi.org/10.1007/s12182-011-0143-z
  185. Rasheed M. A., Hasan S. Z., Rao P. L.S., Boruah A., Sudarshan V., Kumar B., Harinarayana T. The microbial activity in development of hydrocarbon microseepage: an indicator for oil and gas exploration // Geosci. J. 2013. V. 17. P. 329−338. https://doi.org/10.1007/s12303-013-0026-y
  186. Rasheed M. A., Hasan S. Z., Rao P. L.S., Boruah A., Sudarshan V., Kumar B., Harinarayana T. Application of geo-microbial prospecting method for finding oil and gas reservoirs // Front. Earth Sci. 2015. V. 9. P. 40–50. https://doi.org/10.1007/s11707-014-0448-5
  187. Rasmussen M. T., Saito A. M., Hyman M. R., Semprini L. Co-encapsulation of slow release compounds and Rhodococcus rhodochrous ATCC 21198 in gellan gum beads to promote the long-term aerobic cometabolic transformation of 1,1,1-trichloroethane, cis-1,2-dichloroethene and 1,4-dioxane // Environ. Sci. Process. Impacts. 2020. V. 22. P. 771–791. https://doi.org/10.1039/C9EM00607A
  188. Raymond D. R., Davis G. B. n-Alkane utilization and lipid formation by Nocardia // Appl. Microbiol. 1960. V. 8. P. 329−334. https://doi.org/10.1128/ am.8.6.329-334.1960
  189. Reddy C. M., Arey J. S., Seewald J. S., Sylva S. P. Lemkau K. L., Nelson R. K., Carmichael C. A., McIntyre C.P., Fenwick J., Ventura G. T., van Mooy B. A.S., Camilli R. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 20229−20234. https://doi.org/10.1073/pnas.1101242108
  190. Redmond M. C., Valentine D., Sessions A. L. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing // Appl. Environ. Microbiol. 2010. V. 76. P. 6412−6422. https://doi.org/10.1128/AEM.00271-10
  191. Redmond M. C., Valentine D. L. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 20292–20297. https://doi.org/10.1073/pnas.1108756108
  192. Sánchez O. Constructed wetlands revisited: microbial diversity in the -omics era // Microb. Ecol. 2017. V. 73. P. 722‒733. https://doi.org/10.1007/s00248-016-0881-y
  193. Sangal V., Goodfellow M., Jones A. L., Seviou, R.J., Sutcliffe I. C. Refined systematics of the genus Rhodococcus based on whole genome analyses // Biology of Rhodococcus / Ed. Alvarez H. M. Springer International Publishing, Cham, 2019. P. 1–21. https://doi.org/10.1007/978-3-030-11461-9_1
  194. Saunois M., Stavert A. R., Poulter B., Bousquet P., Canadell J. G., Jackson R. B. et al. The global methane budget 2000–2017 // Earth Syst. Sci. Data. 2020. V. 12. P. 1561–1623. https://doi.org/10.5194/essd-12-1561-2020
  195. Sayavedra-Soto L.A., Hamamura N., Liu C.-W., Kimbrel J. A., Chang J. H., Arp D. J. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family // Environ. Microbiol. Rep. 2011. V. 3. P. 390−396. https://doi.org/10.1111/j.1758-2229.2010.00239.x
  196. Seto M., Kimbara K., Shimura M., Hatta T., Fukuda M., Yano K. A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 1995. V. 61. P. 3353–3358.
  197. Seto N., Iizuka H. Microbiological studies on petroleum and natural gas. XI. A new hydrocarbon-utilizing actinomycete // J. Gen. Microbiol. 1970. V. 16. P. 127–135. https://doi.org/10.2323/jgam.16.2_127
  198. Sharp J. O., Sales C. M., LeBlanc J.C., Liu J., Wood T. K., Eltis L. D., Mohn W. W., Alvarez-Cohen L. An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1 // Appl. Environ. Microbiol. 2007. V. 73. P. 6930‒6938. https://doi.org/10.1128/AEM.01697-07
  199. Sharp J. O., Sales C. M., Alvarez-Cohen L. Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two Actinomycetales // Biotechnol. Bioeng. 2010. V. 107. P. 924–932. https://doi.org/10.1002/bit.22899
  200. Sluis M. K., Sayavedra-Soto L.A., Arp D. J. Molecular analysis of the soluble butane monooxygenase from “Pseudomonas butanovora” // Microbiology (Reading). 2002. V. 148. P. 3617–3629. https://doi.org/10.1099/00221287-148-11-3617
  201. Smith D. Culture collections // Adv. Appl. Microbiol. 2012. V. 79. P. 73−118. https://doi.org/10.1016/B978-0-12-394318-7.00004-8
  202. Steffan R. J., McClay K., Vainberg S., Condee C. W., Zhang D. Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria // App. Environ. Microbiol. 1997. V. 63. P. 4216–4222. https://doi.org/10.1128/aem.63.11.4216-4222.1997
  203. Stephens G. M., Dalton H. The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria // J. Gen. Microbiol. 1986. V. 132. P. 2453–2462.https://doi.org/10.1099/00221287-132-9-2453
  204. Takahashi J., Ichkawa Y., Sagae H., Komuro I., Kanou H., Yamada K. Isolation and identification of n-butane-assimilating bacterium // Agric. Biol. Chem. 1980. V. 14. P. 1835−1840. https://doi.org/10.1080/00021369.1980.10864232
  205. Táncsics A., Benedek T., Szoboszlay S., Péter V. G., Milán F., István M., Márialigeti K., Kukolya J., Szabolcs L., Balázs K. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus // Syst. Appl. Microbiol. 2015. V. 38. P. 1‒7. https://doi.org/10.1016/j.syapm.2014.10.010
  206. Tausz J., Donath P. Űber die oxidation der wasserstoffe und kohlerwasserstoffs mittels bakterien // Z. Physiol. Chem. 1930. No. 90. P. 141−168. https://doi.org/10.1515/bchm2.1930.190.3-6.141
  207. Taylor S. W., Lollar S. B., Wassenaar L. I. Bacteriogenic ethane in near-surfaceaquifers: implications for leaking hydrocarbon well bores // Environ. Sci. Technol. 2000. V. 34. P. 4727–4732. https://doi.org/10.1021/es001066x
  208. Tucker J., Hitzman D. Detailed microbial surveys help improve reservoir characterization // Oil Gas J. 1994. V. 6. P. 65–69.
  209. Tupa P. R., Masuda H. Comparative proteomic analysis of propane metabolism in Mycobacterium sp. strain ENV421 and Rhodococcus sp. strain ENV425 // J. Mol. Microbiol. Biotechnol. 2018a. V. 28. P. 107–115. https://doi.org/10.1159/000490494
  210. Tupa P. R., Masuda H. Draft genome sequence of a propanotroph, Rhodococcus sp. strain ENV425, capable of degrading methyl tert-butyl ether and N-nitrosodimethylamine // Gen. Announc. 2018b. V. 6. Art. e00051-18. https://doi.org/10.1128/genomeA.00051-18
  211. Tupa P. R., Masuda H. Genomic analysis of propane metabolism in methyl tert-butyl ether-degrading Mycobacterium sp. strain ENV421 // J. Genomics. 2018с. V. 6. P. 24−28. https://doi.org/10.7150/jgen.24929
  212. Van Beilen J. B., Smits T. H., Roos F. F., Brunner T., Balada S. B., Röthlisberger M., Witholt B. Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases // J. Bacteriol. 2005. V. 187. P. 85–91. https://doi.org/10.1128/JB.187.1.85-91.2005
  213. Van Beilen J. B., Funhoft E. G. Alkane hydroxylases involved in microbial alkane degradation // Appl. Microbiol. Biotechnol. 2007. V. 76. P. 13−21. https://doi.org/10.1007/s00253-006-0748-0
  214. Van Ginkel C. G., Welten H. G.J., Hartmans S., de Bont J. A.M. Metabolism of trans-2-butene and butane in Nocardia TB1 // J. Gen. Microbiol. 1987a. V. 133. P. 1713−1720. https://doi.org/10.1099/00221287-133-7-1713
  215. Van Ginkel C. G., Welten H. G.J., de Bont J. A.M. Oxidation of gaseous and volatile hydrocarbons by selected alkene utilizing bacteria // Appl. Environ. Microbiol. 1987b. V. 53. P. 2903–2907. https://doi.org/10.1128/aem.53.12.2903-2907.1987
  216. Valentine D. L., Kessler J. D., Redmond M. C., Mendes S. D., Heintz M. B., Farwell C., Hu L., Kinnaman F. S., Yvon-Lewis S., Du M., Chan E. W., Tigreros F. G., Villanueva C. J. Propane respiration jump-starts microbial response to a deep oil spill // Science. 2010. V. 330. P. 208–211. https://doi.org/10.1126/science.1196830
  217. Verce M. F., Freeman D. L. Modelling the kinetics of vinyl chloride cometabolism by an ethane-grown Pseudomonas sp. // Biotechnol. Bioeng. 2000. V. 71. P. 274–285. https://doi.org/10.1002/1097-0290(2000)71:4<274::aid-bit1017>3.0.co;2-z
  218. Vestal J. R., Perry J. J. Divergent metabolic pathways for propane and propionate utilization by a soil isolate // J. Bacteriol. 1969. V. 99. P. 216−221. https://doi.org/10.1128/jb.99.1.216-221.1969
  219. Vestal J. R., Perry J. J. Effect of substrate on the lipids of the hydrocarbon utilizing Mycobacterium vaccae // Can. J. Microbiol. 1971. V. 17. P. 445−440. https://doi.org/10.1139/m71-075
  220. Vogt C., Song Z., Richnow H.-H., Musat F. Carbon and hydrogen stable isotope fractionation due to monooxygenation of short-chain alkanes by butane monooxygenase of Thauera butanivorans Bu-B1211 // Front. Microbiol. 2023. V. 14. Art. 1250308. https://doi.org/10.3389/fmicb.2023.1250308
  221. Volesky B., Zajic J. E. Ethane and natural gas oxidation by fungi // Dev. Ind. Microbiol. 1970. V. 11. P. 84–195.
  222. Wagner M., Wagner M., Piske J., Smit R. Case histories of microbial prospection for oil and gas, onshore and offshore in northwest Europe // Surface exploration case histories: applications of geochemistry, magnetics, and remote sensing / Eds. Schumacher D., LeSchack L.A. AAPG Studies in Geology no. 48 and SEG Geophysical References Series. 2002. No. 11. P. 453–479. https://doi.org/10.1306/St48794C19
  223. Woods N. R. The bacterial metabolism of propane. PhD thesis. University of Warwick. 1988.
  224. Woods N. R., Murrell J. C. The metabolism of propane in Rhodococcus rhodochrous PNKb1 // Microbiology (Reading). 1989. V. 135. P. 2335–2344. https://doi.org/10.1099/00221287-135-8-2335
  225. Wu M., Lai C.-Y., Wang Y., Yuan Z., Guo J. Microbial nitrate reduction in propane- or butane-based membrane biofilm reactors under oxygen-limiting conditions // Water Res. 2023. V. 235. Art. 119887. https://doi.org/10.1016/j.watres.2023.119887
  226. Wu X.-Y., Xu X.-M., Wu C.-F., Fu S.-Y., Deng M.-C., Feng L., Yuan J.-P., Wang J.-H. Responses of microbial communities to light-hydrocarbon microseepage and novel indicators for microbial prospecting of oil/gas in the Beihanzhuang Oilfield, northern Jiangsu, China // Geomicrobiol. J. 2014. V. 31. P. 697–707. https://doi.org/10.1080/01490451.2013.843619
  227. Yagi O., Hashimoto A., Iwasaki K., Nakajima M. Aerobic degradation of 1,1,1-trichloroethane by Mycobacterium spp. isolated from soil // Appl. Environ. Microbiol. 1999. V. 65. P. 4693–4696. https://doi.org/10.1128/AEM.65.10.4693-4696.1999
  228. Yuan Z. H., Zhang Y. Q., Zhao Q., Jiang H. F., Liu Y. Y., Luo Z. H., Li X., Wang S. T., Li B., Pan G. H., Gao X. Y., Zhang G. L. New progress of microbial prospecting of oil and gas in China: taking the satellite oilfield in Daqing as an example // Sci. China Earth Sci. 2009. V. 52. P. 152–158. https://doi.org/10.1007/s11430-009-5016-6
  229. Zhang C.-Y., He Z. H., Zhang S., Yin M.-Y., Ning Z., Liu Y.-C. A DNA-based analysis of a microbial technique for the prospecting of oil and gas applied to known oil field, China // Geomicrobiol. J. 2016. V. 34. P. 63‒70. https://doi.org/10.1080/01490451.2016.1139641
  230. Zhang F., She Y., Zheng Y., Zhou Z. F., Kong S. Q., Hou D. J. Molecular biologic techniques applied to the microbial prospecting of oil and gas in the Ban 876 gas and oil field in China // Appl. Microbiol. Biotechnol. 2010. V. 86. P. 1183–1194. https://doi.org/10.1007/s00253-009-2426-5
  231. Zhang Y., Tang X.-J., Shen B., Yu X.-J., Wang E.-T., Yuan H.-L. Identification and characterization of the butane-utilizing bacterium, Arthrobacter sp. PG-3-2, harboring a novel bmoX gene // Geomicrobiol. J. 2013. V. 30. P. 85−92. https://doi.org/10.1080/01490451.2011.653086
  232. Zhang Y., Deng C.-P., Shen B., Yang J.-S., Wang E.-T., Yuan H. L. Syntrophic interactions within a butane-oxidizing bacterial consortium isolated from Puguang gas field in China // Microb. Ecol. 2016. V. 72. P. 538–548. https://doi.org/10.1007/s00248-016-0799-4
  233. Zhou Q.-Z., Xu X.-M., Xu H., Zheng G.-Z., Pi W.-L., Jiang Y.-L., Xu X.-P., Li Y., Wang J.-H. Surface microbial geochemistry of the Beihanzhuang Oilfield, northern Jiangsu, China // J. Petrol. Sci. Engineer. 2020. V. 191. Art. 107140.https://doi.org/10.1016/j.petrol.2020.107140
  234. Zou B., Huang Y., Zhang P.-P., Ding X.-M., den Camp H. J.M.O., Quan Z.-X. Horizontal gene transfer of genes encoding copper-containing membrane-bound monooxygenase (CuMMO) and soluble di-iron monooxygenase (SDIMO) in ethane- and propane-oxidizing Rhodococcus bacteria // Appl. Environ. Microbiol. 2021. V. 87. Art. e00227-21. https://doi.org/10.1128/AEM.00227-21

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional materials
Download (573KB)
3. Fig. 1. Scanning electron microscopy of R. ruber IEGM 333 and IEGM 565 cells grown on a mineral medium in a propane atmosphere (Ivshina et al., 2021): a ‒ strain IEGM 333, the arrow indicates the germination of the progenitor coccobacillary cell; b ‒ strain 333, the arrow indicates a filamentous branching cell; c ‒ strain 333, cells with laterally located growth processes; d ‒ strain IEGM 565, the arrow indicates the exfoliation of a fragment of the “old” peptide glycan from the cell surface.

Download (378KB)
4. Fig. 2. Scanning electron microscopy of R. ruber IEGM 333 cells grown on a mineral medium in a propane atmosphere (Ivshina et al., 1982, 2021; Ivshina et al., 2021, 2024a): a ‒ cone-shaped outgrowths are shown by an arrow; b ‒ cells separating by cleavage. The arrow indicates ring-shaped protrusions dividing the cell into two zones: the old mother cell with a strong cell wall and the new daughter cell of a smaller diameter with a thin elastic layer.

Download (217KB)
5. Fig. 3. Ultrathin sections of R. ruber cells grown on a mineral medium in an atmosphere of propane (a-c, d, f) and n-butane (d) (Ivshina et al., 1982, 2021; Ivshina et al., 2024a): a ‒ strain IEGM 73; b ‒ strain IEGM 565; c ‒ strain IEGM 333; d ‒ strain IEGM 342; e ‒ strain IEGM 342. N – nucleoid; IMS – intracytoplasmic membrane system; B – polyphosphate granules; G – lipid inclusions; EPS – electron-dense inclusions; FC – cytoplasmic fragmentation; OS – rounded structures; MK – microcapsule; RKS – cell wall proliferation; MV – microvesicles.

Download (390KB)
6. Fig. 4. Soluble diiron-containing monooxygenases of R. ruber strains from the Regional Profiled Collection of Alkanotrophic Microorganisms (acronym of the IEGM collection, http://www.iegmcol.ru/): a – organization of loci with genes encoding monooxygenases MO-I and MO-II (numbers show the length of genes and spacers between genes in nucleotides; lengths of peptide chains in amino acid residues are given in brackets; arrows point to overlaps between genes of 3 nucleotides in length; ? – hypothetical proteins; filled sectors – propane metabolism genes; unfilled sectors – genes not directly associated with propane metabolism); b – phylogram constructed on the basis of nucleotide sequences of the α-subunit of protein A of monooxygenases MO-I and MO-II; c – a phylogram constructed based on the amino acid sequences of the α-subunit of protein A of monooxygenases MO-I and MO-II. Phylograms were obtained using the Clustal Omega program (Madeira et al., 2024). The scales on the phylograms show the evolutionary distances between the sequences. The names of the branches include the strain number and information about the location of the gene in the genome of this strain. The genomes of the strains listed in the legend to Fig. S2 were used for the analysis.

Download (380KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».