Biosilica of diatom algae: synthesis, characteristics, modification and application in practical research
- Авторлар: Golubeva A.I.1, Kulikovsky M.S.1
-
Мекемелер:
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences
- Шығарылым: Том 94, № 3 (2025)
- Беттер: 209-231
- Бөлім: REVIEWS
- URL: https://journals.rcsi.science/0026-3656/article/view/279044
- DOI: https://doi.org/10.31857/S0026365625030017
- ID: 279044
Дәйексөз келтіру
Аннотация
The review presents the key results of the study of biosilica obtained from diatoms and its application in various fields of science and technology. The purpose of this review is to systematize data on the properties, modification methods and areas of application of this material. The data on the properties of biosilica are summarized and the main modification methods are considered, which can significantly expand the range of functional characteristics of this material. Particular attention is paid to the use of unmodified and modified biosilica in biomedicine as nanocouriers of drugs, materials for tissue regeneration, treatment of infected wounds, as well as biosensors and matrices for SERS analysis. Data on its effectiveness in environmental studies, such as wastewater treatment from heavy metals, organic dyes and phenols, are presented. New promising areas of application of biosilica are separately considered, including its use in energy, chromatographic analysis and other innovative areas. The review summarizes modern data and emphasizes the importance of developing new modification methods to expand the functionality of this unique material.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Golubeva
K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: aleksandra.golubeva.phd@gmail.com
Ресей, Moscow, 127276
M. Kulikovsky
K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences
Email: aleksandra.golubeva.phd@gmail.com
Ресей, Moscow, 127276
Әдебиет тізімі
- Гогорев Р. М., Чудаев Д. А., Степанова В. А., Куликовский М. С. Русский и английский терминологический словарь по морфологии диатомовых водорослей // Новости систематики низших растений. 2018. Т. 52. № 2. С. 265–309. https://doi.org/10.31111/nsnr/2018.52.2.265
- Куликовский М. С., Глущенко А. М., Генкал С. И., Кузнецова И. В. Определитель диатомовых водорослей России. Ярославль: Общество с ограниченной ответственностью “Филигрань”, 2016. 804 с.
- Al-Quraishi D.O., Abbas I. K. Removing heavy metals by diatoms Nitzschia palea and Navicula incerta in their aqueous solutions // Plant. Arch. 2019. V. 19. P. 272–278.
- Ali D. M., Divya C., Gunasekaran M., Thajuddin N. Biosynthesis and characterization of silicon-germanium oxide nanocomposite by diatom // Dig. J. Nanomater. Biostruct. 2011. V. 6. P. 117–120.
- Allen A. E., Dupont C. L., Oborník M., Horák A., Nunes-Nesi A., McCrow J.P., Zheng H., Johnson D. A., Hu H., Fernie A. R., Bowler C. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms // Nature. 2011. V. 473. P. 203–207. https://doi.org/10.1038/nature10074
- Ashour M., Alprol A. E., Khedawy M., Abualnaja K. M., Mansour A. T. Equilibrium and kinetic modeling of crystal violet dye adsorption by a marine diatom, Skeletonema costatum // Materials. 2022. V. 15. Art. 6375. https://doi.org/10.3390/ma15186375
- Aw M. S., Bariana M., Yu Y., Addai-Mensah J., Losic D. Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs // J. Biomater. Appl. 2013. V. 28. P. 163–174. https://doi.org/10.1177/0885328212441846
- Azam F., Hemmingsen B. B., Volcani B. E. Germanium incorporation into the silica of diatom cell walls // Arch. Mikrobiol. 1973. V. 92. P. 11–20. https://doi.org/10.1007/BF00409507
- Basharina T. N., Danilovtseva E. N., Zelinskiy S. N., Klimenkov I. V., Likhoshway Y. V., Annenkov V. V. The effect of titanium, zirconium and tin on the growth of diatom Synedra acus and morphology of its silica valves // Silicon. 2012. V. 4. P. 239–249. https://doi.org/10.1007/s12633-012-9119-x
- Bello O. S., Adegoke K. A., Oyewole R. O. Insights into the adsorption of heavy metals from wastewater using diatomaceous earth // Sep. Sci. Technol. 2014. V. 49. P. 1787–1806. https://doi.org/10.1080/01496395.2014.910223
- Benkhaya S., M’rabet S., El Harfi A. A review on classifications, recent synthesis and applications of textile dyes // Inorg. Chem. Commun. 2020. V. 115. Art. 107891. https://doi.org/10.1016/j.inoche.2020.107891
- Bose R., Roychoudhury P., Pal, R. In-situ green synthesis of fluorescent silica-silver conjugate nanodendrites using nanoporous frustules of diatoms: an unprecedented approach // Bioproc. Biosyst. Eng. 2021. V. 44. P. 1263–1273. https://doi.org/10.1007/s00449-021-02536-4
- Bowler C., Vardi A., Allen A. E. Oceanographic and biogeochemical insights from diatom genomes // Ann. ReV. Mar. Sci. 2010. V. 2. P. 333–365. https://doi.org/10.1146/annurev-marine-120308-081051
- Branco-Vieira M., San Martin S., Agurto C., Freitas M. A., Martins A. A., Mata T. M., Caetano N. S. Biotechnological potential of Phaeodactylum tricornutum for biorefinery processes // Fuel. 2020. V. 268. Art. 117357. https://doi.org/10.1016/j.fuel.2020.117357
- Briceño S., Chavez-Chico E.A., González G. Diatoms decorated with gold nanoparticles by in-situ and ex-situ methods for in vitro gentamicin release // Mater. Sci. Eng. C. 2021. V. 123. Art. 112018. https://doi.org/10.1016/j.msec.2021.112018
- Brunner E., Gröger C., Lutz K., Richthammer P., Spinde K., Sumper M. Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms // Appl. Microbiol. Biotechnol. 2009. V. 84. P. 607–616. https://doi.org/10.1007/s00253-009-2140-3
- Brzozowska W., Sprynskyy M., Wojtczak I., Dąbek P., Witkowski A., Buszewski B. “Outsourcing” diatoms in fabrication of metal-doped 3D biosilica // Materials. 2020. V. 13. Art. 2576. https://doi.org/10.3390/ma13112576
- Brzozowska W., Sprynskyy M., Wojtczak I., Dąbek P., Markuszewski M. J., Witkowski A., Buszewski B. Metabolically doping of 3D diatomaceous biosilica with titanium // Materials. 2022. V. 15. Art. 5210. https://doi.org/10.3390/ma15155210
- Camargo E., Jaime P. C.J., Lin C. F., Lin M. S., Yu T. Y., Wu M. C., Lai S. Y., Wang M. Y. Chemical and optical characterization of Psammodictyon panduriforme (Gregory) Mann comb. noV. (Bacillariophyta) frustules // Opt. Mater. Express. 2016. V. 6. P. 1436–1443. https://doi.org/10.1364/OME.6.001436
- Chauton M. S., Skolem L. M., Olsen L. M., Vullum P. E., Walmsley J., Vadstein O. Titanium uptake and incorporation into silica nanostructures by the diatom Pinnularia sp. (Bacillariophyceae) // J. Appl. Phycol. 2015. V. 27. P. 777–786. https://doi.org/10.1007/s10811-014-0373-8
- Chen Y. X., Liu H. C., Xie W. Q., Shen Z., Xia J. L., Nie Z. Y., Xie J. P. Diatom frustules decorated with Co nanoparticles for the advanced anode of Li‐ion batteries // Small. 2023. Art. 2300707. https://doi.org/10.1002/smll.202300707
- Cherifi O., Sbihi K., Bertrand M., Cherifi K. The removal of metals (Cd, Cu and Zn) from the Tensift river using the diatom Navicula subminuscula Manguin: a laboratory study // Int. J. AdV. Res. Biol. Sci. 2016. V. 3. P. 177–187. http://doi.org/10.22192/ijarbs.2016.03.10.024
- Chudzińska J., Woźniak B., Sprynskyy M., Nowak I., Feliczak-Guzik A. Photoremoval of bisphenol A using hierarchical zeolites and diatom biosilica // Int. J. Mol. Sci. 2023. V. 24. Art. 2878. https://doi.org/10.3390/ijms24032878
- Cicco S. R., Vona D., De Giglio E., Cometa S., Mattioli-Belmonte M., Palumbo F., Ragni R., Farinola G. M. Chemically modified diatoms biosilica for bone cell growth with combined drug-delivery and antioxidant properties // ChemPlusChem. 2015. V. 80. P. 1104–1112. https://doi.org/10.1002/cplu.201402398
- Cicco S. R., Vona D., Gristina R., Sardella E., Ragni R., Lo Presti M., Farinola G. M. Biosilica from living diatoms: investigations on biocompatibility of bare and chemically modified Thalassiosira weissflogii silica shells // Bioengineering. 2016. V. 3. Art. 35. https://doi.org/10.3390/bioengineering3040035
- Cicco S. R., Vona D., Leone G., De Giglio E., Bonifacio M. A., Cometa S., Fiore S., Palumbo F., Ragni R., Farinola G. M. In vivo functionalization of diatom biosilica with sodium alendronate as osteoactive material // Mater. Sci. Eng. C. 2019. V. 104. Art. 109897. https://doi.org/10.1016/j.msec.2019.109897
- Cong X., Mu Y., Qin D., Sun X., Su C., Chen T., Wang X., Chen X., Feng C. Copper deposited diatom-biosilica with enhanced photothermal and photodynamic performance for infected wound therapy // New J. Chem. 2022. V. 46. P. 2140–2154. https://doi.org/10.1039/D1NJ05283G
- Das B., Deka S., Patra S. Algae mediated technologies in biotreatment of phenolic wastewaters // An integration of phycoremediation processes in wastewater treatment / Eds. Shah M., Rodriguez-Couto S., De La Cruz C. B.V., Biswas J. Elsevier, 2022. P. 103–120. https://doi.org/10.1016/B978-0-12-823499-0.00016-X
- Davis A. K., Hildebrand M. A self-propagating system for Ge incorporation into nanostructured silica // Chem. Commun. 2008. V. 37. P. 4495–4497. https://doi.org/10.1039/b804955f
- De Tommasi E., De Luca A. C. Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics // Biomed. Opt. Express. 2022. V. 13. P. 3080–3101. https://doi.org/10.1364/BOE.457483
- Delalat B., Sheppard V. C., Rasi Ghaemi S., Rao S., Prestidge C. A., McPhee G., Rogers M. L., Donoghue J. F., Pillay V., Johns T. G., Kröger N., Voelcker N. H. Targeted drug delivery using genetically engineered diatom biosilica // Nat. Commun. 2015. V. 6. Art. 8791. https://doi.org/10.1038/ncomms9791
- Dhanker R., Saxena A., Tiwari A., Singh P. K., Patel A. K., Dahms H. U., Jiang-Shiou Hwang J. S., González-Meza G.M., Melchor-Martínez E.M., Iqbal H. M.N., Parra-Saldívar R. Towards sustainable diatom biorefinery: recent trends in cultivation and applications // Bioresour. Technol. 2024. V. 391. Art. 129905. https://doi.org/10.1016/j.biortech.2023.129905
- Dorrell R. G., Gile G., McCallum G., Méheust R., Bapteste E. P., Klinger C. M., Brillet-Guéguen L., Freeman K. D., Richter D. J., Bowler C. Chimeric origins of Ochrophytes and Haptophytes revealed through an ancient plastid proteom // eLife. 2017. V. 6. Art. e23717. https://doi.org/10.7554/eLife.23717
- Drum R. W., Pankratz H. S. Post mitotic fine structure of Gomphonema parvulum // J. Ultrastruct. Res. 1964. V. 10. P. 217–223. https://doi.org/10.1016/s0022-5320(64)80006-x
- Duan W., Du S., Meng F., Peng X., Peng L., Lin Y., Wang G., Wu J. The pathways by which the marine diatom Thalassiosira sp. OUC2 biodegrades p-xylene, combined with a mechanistic analysis at the proteomic level // Ecotoxicol. Environ. Saf. 2020. V. 198. Art. 110687. https://doi.org/10.1016/j.ecoenv.2020.110687
- Esfandyari J., Shojaedin-Givi B., Hashemzadeh H., Mozafari-Nia M., Vaezi Z., Naderi-Manesh H. Capture and detection of rare cancer cells in blood by intrinsic fluorescence of a novel functionalized diatom // Photodiagnosis Photodyn. Ther. 2020. V. 30. Art. 101753. https://doi.org/10.1016/j.pdpdt.2020.101753
- Falkowski P. G., Katz M. E., Milligan A. J., Fennel K., Cramer B. S., Aubry M. P., Berner R. A., Novacek M. J., Zapol W. M. The rise of oxygen over the past 205 million years and the evolution of large placental mammals // Science. 2005. V. 309. P. 2202–2204. https://doi.org/10.1126/science.1116047
- Fischer C., Adam M., Mueller A. C., Sperling E., Wustmann M., van Pée K. H., Kaskel S., Brunner E. Gold nanoparticle-decorated diatom biosilica: a favorable catalyst for the oxidation of D-glucose // ACS Omega. 2016. V. 1. P. 1253–1261. https://doi.org/10.1021/acsomega.6b00406
- Fuhrmann T., Landwehr S., El Rharbi-Kucki M., Sumper M. Diatoms as living photonic crystals // Appl. Phys. B. 2004. V. 78. P. 257–260. https://doi.org/10.1007/s00340-004-1419-4
- Gannavarapu K. P., Thakkar M., Veerapaga S., Wei L., Dandamudi R. B., Mitra S. Novel diatom-FeOx composite as highly active catalyst in photodegradation of Rhodamine-6G // Nanotechnol. ReV. 2018. V. 7. P. 247–255. https://doi.org/10.1515/ntrev-2017-0218
- Gélabert A., Pokrovsky O. S., Schott J., Boudou A., Feurtet-Mazel A. Cadmium and lead interaction with diatom surfaces: a combined thermodynamic and kinetic approach // Geochim. Cosmochim. Acta. 2007. V. 71. P. 3698–3716. https://doi.org/10.1016/j.gca.2007.04.034
- Gholami P., Khataee A., Bhatnagar A. Environmentally superior cleaning of diatom frustules using sono-Fenton process: facile fabrication of nanoporous silica with homogeneous morphology and controlled size // Ultrason. Sonochem. 2020. V. 64. Art. 105044. https://doi.org/10.1016/j.ultsonch.2020.105044
- Gnanamoorthy P., Anandhan S., Prabu V. A. Natural nanoporous silica frustules from marine diatom as a biocarrier for drug delivery // J. Porous Mater. 2014. V. 21. P. 789–796. https://doi.org/10.1007/s10934-014-9827-2
- Golubeva A., Roychoudhury P., Dąbek P., Pałczyńska J., Pryshchepa O., Piszczek P., Pomastowski P., Gloc M., Dobrucka R., Feliczak-Guzik A., Nowak I., Kurzydłowski K. J., Buszewski B., Witkowski A. A novel effective bio-originated methylene blue adsorbent: the porous biosilica from three marine diatom strains of Nanofrustulum spp. (Bacillariophyta) // Sci. Rep. 2023a. V. 13. P. 9168. https://doi.org/10.1038/s41598-023-36408-6
- Golubeva A., Roychoudhury P., Dąbek P., Pryshchepa O., Pomastowski P., Pałczyńska J., Piszczek P., Gloc M., Dobrucka R., Feliczak-Guzik A., Nowak I., Buszewski B., Witkowski A. Removal of the basic and diazo dyes from aqueous solution by the Frustules of Halamphora cf. salinicola (Bacillariophyta) // Mar. Drugs. 2023b. V. 21. Art. 312. https://doi.org/10.3390/md21050312
- Gröger C., Lutz K., Brunner E. Biomolecular self-assembly and its relevance in silica biomineralization // Cell. Biochem. Biophys. 2008a. V. 50. P. 23–39. https://doi.org/10.1007/s12013-007-9003-2
- Gröger C., Sumper M., Brunner E. Silicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: solid-state 29Si NMR and fluorescence microscopic studies // J. Struct. Biol. 2008b. V. 161. P. 55–63. https://doi.org/10.1016/j.jsb.2007.09.010
- Gumustas M., Sengel-Turk C.T., Gumustas A., Ozkan S. A., Uslu B. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems // Multifunctional systems for combined delivery, biosensing and diagnostics / Ed. Grumezescu A. M. Elsevier, 2017. P. 67–108. https://doi.org/10.1016/B978-0-323-52725-5.00005-8
- Gutu T., Gale D. K., Jeffryes C., Wang W., Chang C. H., Rorrer G. L., Jiao J. Electron microscopy and optical characterization of cadmium sulphide nanocrystals deposited on the patterned surface of diatom biosilica // J. Nanomater. 2009. Art. 860536. https://doi.org/10.1155/2009/860536
- Hadjar H., Hamdi B., Bachiller-Baeza B., Doña-Rodríguez J.M. Efficient sorption performance of carbon-diatomaceous silica compounds towards phenol // Surf. Interfaces. 2021. V. 24. Art. 101101. https://doi.org/10.1016/j.surfin.2021.101101
- He J., Chen D., Li Y., Shao J., Xie J., Sun Y., Yan Z., Wang J. Diatom-templated TiO2 with enhanced photocatalytic activity: Biomimetics of photonic crystals // Appl. Phys. A. 2013. V. 113. P. 327–332. https://doi.org/10.1007/s00339-013-7970-2
- Hedayatkhah A., Cretoiu M. S., Emtiazi G., Stal L. J., Bolhuis H. Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production // J. Environ. Manage. 2018. V. 227. P. 313–320. https://doi.org/10.1016/j.jenvman.2018.09.011
- Hernández-Ávila J., Salinas-Rodríguez E., Cerecedo-Sáenz E., Reyes-Valderrama M.I., Arenas-Flores A., Román-Gutiérrez A.D., Rodríguez-Lugo V. Diatoms and their capability for heavy metal removal by cationic exchange // Metals. 2017. V. 7. Art. 169. https://doi.org/10.3390/met7050169
- Hildebrand M., Davis A. K., Smith S. R., Traller J. C., Abbriano R. The place of diatoms in the biofuels industry // Biofuels. 2012. V. 3. P. 221–240. https://doi.org/10.4155/bfs.11.157
- Hildebrand M., Lerch S. J.L. Diatom silica biomineralization: parallel development of approaches and understanding // Semin. Cell. DeV. Biol. 2015. V. 46. P. 27–35. https://doi.org/10.1016/j.semcdb.2015.06.007
- Husain Q. Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review // Crit. ReV. Biotechnol. 2006. V. 26. P. 201–221. https://doi.org/10.1080/07388550600969936
- Janjua T. I., Cao Y., Kleitz K., Linden M., Yu C., Popat A. Silica nanoparticles: a review of their safety and current strategies to overcome biological barriers // AdV. Drug. DeliV. ReV. 2023. V. 203. Art. 115115. https://doi.org/10.1016/j.addr.2023.115115
- Jantschke A., Herrmann A. K., Lesnyak V., Eychmüller A., Brunner E. Decoration of diatom biosilica with noble metal and semiconductor nanoparticles (<10 nm): assembly, characterization, and applications // Chem. Asian. J. 2012. V. 7. P. 85–90. https://doi.org/10.1002/asia.201100563
- Javalkote V. S., Pandey A. P., Puranik P. R., Deshmukh P. K. Magnetically responsive siliceous frustules for efficient chemotherapy // Mater. Sci. Eng. C. 2015. V. 50. P. 107–116. https://doi.org/10.1016/j.msec.2015.01.079
- Jeffryes C., Gutu T., Jiao J., Rorrer G. L. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process // ACS Nano. 2008a. V. 2. P. 2103–2112. https://doi.org/10.1021/nn800470x
- Jeffryes C., Gutu T., Jiao J., Rorrer G. L. Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. // Mater. Sci. Eng. C. 2008b. V. 28. P. 107–118. https://doi.org/10.1016/j.msec.2007.01.002
- Jeffryes C., Solanki R., Rangineni Y., Wang W., Chang C. H., Rorrer G. L. Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium // AdV. Mater. 2008c. V. 20. P. 2633–2637. https://doi.org/10.1002/adma.200800292
- Johnston M. R., Gascooke J. R., Ellis A. V., Leterme S. C. Diatoms response to salinity changes: investigations using single pulse and cross polarisation magic angle spinning 29Si NMR spectra // The Analyst. 2018. V. 143. P. 4930–4935. https://doi.org/10.1039/c8an00948a
- Kamińska A., Sprynskyy M., Winkler K., Szymborski T. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma // Anal. Bioanal. Chem. 2017. V. 409. P. 6337–6347. https://doi.org/10.1007/s00216-017-0566-5
- Karaman E. S., Wang Z., Di Benedetto G., Zunino III J.L., Meng X., Mitra S. Fabrication of supercapacitors and flexible electrodes using biosilica from cultured diatoms // Mater. Today. Energy. 2019. V. 11. P. 166–173. https://doi.org/10.1016/j.mtener.2018.11.004
- Katheresan V., Kansedo J., Lau S. Y. Efficiency of various recent wastewater dye removal methods: a review // J. Environ. Chem. Eng. 2018. V. 6. P. 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
- Khan M. J., Rai A., Ahirwar A., Sirotiya V., Mourya M., Mishra S., Schoefs B., Marchand J., Bhatia S. K., Varjani S., Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations // Bioengineered. 2021. V. 12. P. 9531–9549. https://doi.org/10.1080/21655979.2021.1996748
- Kolbe F., Brunner E. Silicic acid uptake and storage by diatoms // The molecular life of diatoms / Eds. Falciatore A., Mock T. Springer, 2022. P. 345–365. https://doi.org/10.1007/978-3-030-92499-7_13
- Kong X., Squire K., Li E., LeDuff P., Rorrer G. L., Tang S., Chen B., McKay C., Navarro-Gonzalez R., Wang A. X. Chemical and biological sensing using diatom photonic crystal biosilica with in-situ growth plasmonic nanoparticles // IEEE Trans. Nanobiosci. 2016. V. 15. P. 828–834. https://doi.org/10.1109/TNB.2016.2636869
- Kraai J. A., Rorrer G. L., Wang A. X. Highly-porous diatom biosilica stationary phase for thin-layer chromatography // J. Chromatogr. A. 2019. V. 1591. P. 162–170. https://doi.org/10.1016/j.chroma.2019.01.037
- Kraai J. A., Wang A. X., Rorrer G. L. Photonic crystal enhanced SERS detection of analytes separated by ultrathin layer chromatography using a diatom frustule monolayer // AdV. Mater. Interfaces. 2020. V. 7. Art. 2000191. https://doi.org/10.1002/admi.202000191
- Kröger N., Lorenz S., Brunner E., Sumper M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis // Science. 2002. V. 298. P. 584–586. https://doi.org/10.1126/science.1076221
- Kröger N., Poulsen, N. Diatoms-from cell wall biogenesis to nanotechnology // Annu. ReV. Genet. 2008. V. 42. P. 83–107. https://doi.org/10.1146/annurev.genet.41.110306.130109
- Kumar S., Rechav K., Kaplan-Ashiri I., Gal A. Imaging and quantifying homeostatic levels of intracellular silicon in diatoms // Sci. AdV. 2020. V. 6. Art. eaaz7554. https://doi.org/10.1126/sciadv.aaz7554
- Kumari S., Min K. H., Kanth B. K., Jang E. K., Pack S. P. Production of TiO2-deposited diatoms and their applications for photo-catalytic degradation of aqueous pollutants // Biotechnol. Bioprocess. Eng. 2020. V. 25. P. 758–765. https://doi.org/10.1007/s12257-020-0019-4
- Lang Y., del Monte F., Rodriguez B. J., Dockery P., Finn D. P., Pandit A. Integration of TiO2 into the diatom Thalassiosira weissflogii during frustule synthesis // Sci. Rep. 2013. V. 3. Art. 3205. https://doi.org/10.1038/srep03205
- Lebeau T., Robert J. M. Diatom cultivation and biotechnologically relevant products. Part II: current and putative products // Appl. Microbiol. Biotechnol. 2003. V. 60. P. 624–632. https://doi.org/10.1007/s00253-002-1177-3
- Leone G., Vona D., Presti M. L., Urbano L., Cicco S., Gristina R., Palumbo F., Ragni R., Farinola G. M. Ca2+-in vivo doped biosilica from living Thalassiosira weissflogii diatoms: investigation on Saos-2 biocompatibility // MRS AdV. 2017. V. 2. P. 1047–1058. https://doi.org/10.1557/adv.2017.49
- Lettieri S., Setaro A., De Stefano L., De Stefano M., Maddalena P. The gas‐detection properties of light‐emitting diatoms // AdV. Funct. Mater. 2008. V. 18. P. 1257–1264. https://doi.org/10.1002/adfm.200701124
- Lewin J. Heterotrophy in diatoms // J. Gen. Microbiol. 1953. V. 9. P. 305–313. https://doi.org/10.1099/00221287-9-2-305
- Lewin J. Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth // Phycologia. 1996. V. 6. P. 1–12. https://doi.org/10.2216/i0031-8884-6-1-1.1
- Li R., Chen G. Z., Tam N. F., Luan T. G., Shin P. K., Cheung S. G., Liu Y. Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii // Ecotoxicol. Environ. Saf. 2009. V. 72. P. 321–328. https://doi.org/10.1016/j.ecoenv.2008.05.012
- Li K. M., Jiang J. G., Tian S. C., Chen X. J., Yan F. Influence of silica types on synthesis and performance of amine–silica hybrid materials used for CO2 capture // J. Phys. Chem. C. 2014. V. 118. P. 2454–2462. https://doi.org/10.1021/jp408354r
- Li J., Han J., Sun Q., Wang Y., Mu Y., Zhang K., Dou X., Kong M., Chen X., Feng C. Biosynthetic calcium-doped biosilica with multiple hemostatic properties for hemorrhage control // J. Mater. Chem. B. 2018. V. 6. P. 7834–7841. https://doi.org/10.1039/c8tb00667a
- Li H. Y., Lu Y., Zheng J. W., Yang W. D., Liu J. S. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis // Mar. Drugs. 2014. V. 12. P. 153–166. https://doi.org/10.3390/md12010153
- Liao Q., Sun J., Gao L. The adsorption of resorcinol from water using multi-walled carbon nanotubes // Colloids. Surf. A. 2008. V. 312. P. 160–165. https://doi.org/10.1016/j.colsurfa.2007.06.045
- Lin Z., Li J., Luan Y., Dai W. Application of algae for heavy metal adsorption: A 20-year meta-analysis // Ecotoxicol. Environ. Saf. 2020. V. 190. Art. 110089. https://doi.org/10.1016/j.ecoenv.2019.110089
- Liu Y., Guan Y., Gao Q., Tam N. F., Zhu W. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta // Chemosphere. 2010. V. 80. P. 592–599. https://doi.org/10.1016/j.chemosphere.2010.03.042
- Losic D., Yu Y., Aw M. S., Simovic S., Thierry B., Addai-Mensah J. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies // Chem. Commun. 2010. V. 46. P. 6323–6325. https://doi.org/10.1039/c0cc01305f
- Luo J., Liu P., Peng G., Tao Zhang J. Basic characterization and sputtering processing of diatom‐based anode materials // ChemistrySelect. 2023. V. 8. Art. e202204313. https://doi.org/10.1002/slct.202204313
- Machill S., Köhler L., Ueberlein S., Hedrich R., Kunaschk M., Paasch S., Schulze R., Brunner E. Analytical studies on the incorporation of aluminium in the cell walls of the marine diatom Stephanopyxis turris // BioMetals. 2013. V. 26. P. 141–150. https://doi.org/10.1007/s10534-012-9601-3
- Marella T. K., Saxena A., Tiwari A. Diatom mediated heavy metal remediation: a review // Bioresour. Technol. 2020. V. 305. Art. 123068. https://doi.org/10.1016/j.biortech.2020.123068
- Martin‐Jézéquel V., Hildebrand M., Brzezinski M. A. Silicon metabolism in diatoms: implications for growth // J. Phycol. 2000. V. 36. P. 821–840. https://doi.org/10.1046/j.1529-8817.2000.00019.x
- Milligan A. J., Morel F. M. A proton buffering role for silica in diatoms // Science. 2002. V. 297. P. 1848–1850. https://doi.org/10.1126/science.1074958
- Milović M., Simović S., Lošić D., Dashevskiy A., Ibrić S. Solid self-emulsifying phospholipid suspension (SSEPS) with diatom as a drug carrier // Eur. J. Pharm. Sci. 2014. V. 63. P. 226–232. https://doi.org/10.1016/j.ejps.2014.07.010
- Norberg A. N., Wagner N. P., Kaland H., Vullum-Bruer F., Svensson A. M. Silica from diatom frustules as anode material for Li-ion batteries // RSC AdV. 2019. V. 9. P. 41228–41239. https://doi.org/10.1039/c9ra07271c
- Nowak A. P., Sprynskyy M., Brzozowska W., Lisowska-Oleksiak A. Electrochemical behavior of a composite material containing 3D-structured diatom biosilica // Algal Res. 2019. V. 41. Art. 101538. https://doi.org/10.1016/j.algal.2019.101538
- O’Neill C., Hawkes F. R., Hawkes D. L., Lourenço N. D., Pinheiro H. M., Delée W. Colour in textile effluents – sources, measurement, discharge consents and simulation: a review // J. Chem. Technol. Biotechnol. 1999. V. 74. P. 1009–1018. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N
- Otzen D. The role of proteins in biosilicification // Scientifica. 2012. Art. 867562. https://doi.org/10.6064/2012/867562
- Pandit P., Rananaware P., D’Souza A., Kurkuri M. D., Brahmkhatri V. Functionalized diatom biosilica decorated with nanoparticles: synthesis, characterization, catalytic oxidation, and dye scavenging applications // J. Porous Mater. 2022. V. 29. P. 1369–1383. https://doi.org/10.1007/s10934-022-01262-w
- Peng J., Yuan J. P., Wu C. F., Wang J. H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health // Mar. Drugs. 2011. V. 9. P. 1806–1828. https://doi.org/10.3390/md9101806
- Petersen J., Teich R., Brinkmann H., Cerff R. A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to Haptophytes, Cryptophytes, Heterokonts, and Dinoflagellates // J. Mol. Evol. 2006. V. 62. P. 143–157. https://doi.org/10.1007/s00239-004-0305-3
- Poulsen N., Scheffel A., Sheppard V. C., Chesley P. M., Kröger N. Pentalysine clusters mediate silica targeting of silaffins in Thalassiosira pseudonana // J. Biol. Chem. 2013. V. 288. P. 20100–20109. https://doi.org/10.1074/jbc.M113.469379
- Pryshchepa O., Pomastowski P., Buszewski B. Silver nanoparticles: synthesis, investigation techniques, and properties // AdV. Colloid. Interface. Sci. 2020. V. 284. Art. 102246. https://doi.org/10.1016/j.cis.2020.102246
- Qin T., Gutu T., Jiao J., Chang C. H., Rorrer G. L. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum // ACS Nano. 2008a. V. 2. P. 1296–1304. https://doi.org/10.1021/nn800114q
- Qin T., Gutu T., Jiao J., Chang C. H., Rorrer G. L. Photoluminescence of silica nanostructures from bioreactor culture of marine diatom Nitzschia frustulum // J. Nanosci. Nanotechnol. 2008b. V. 8. P. 2392–2398. https://doi.org/10.1166/jnn.2008.241
- Rabsch U., Elbrächter M. Cadmium and zinc uptake, growth, and primary production in Coscinodiscus granii cultures containing low levels of cells and dissolved organic carbon // Helgol. Mar. Res. 1980. V. 33. P. 79–88. https://doi.org/10.1007/BF02414737
- Rafatullah M., Sulaiman O., Hashim R., Ahmad A. Adsorption of methylene blue on low-cost adsorbents: a review // J. Hazard. Mater. 2010. V. 177. P. 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047
- Raven J. A. The transport and function of silicon in plants // Biol. ReV. 1983. V. 58. P. 179–207. https://doi.org/10.1111/j.1469-185X.1983.tb00385.x
- Redan B. W., Jablonski J. E., Halverson C., Jaganathan J., Mabud M. A., Jackson L. S. Factors affecting transfer of the heavy metals arsenic, lead, and cadmium from diatomaceous-earth filter aids to alcoholic beverages during laboratory-scale filtration // J. Agric. Food. Chem. 2019. V. 67. P. 2670–2678. https://doi.org/10.1021/acs.jafc.8b06062
- Reid A., Buchanan F., Julius M., Walsh P. J. A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair // J. Mater. Chem. B. 2021. V. 9. P. 6728–6737. https://doi.org/10.1039/d1tb00322d
- Roche H. M. Unsaturated fatty acids // Proc. Nutr. Soc. 1999. V. 58. P. 397–401. https://doi.org/10.1017/s002966519900052x
- Rogato A., De Tommasi E. Physical, chemical, and genetic techniques for diatom frustule modification: applications in nanotechnology // Appl. Sci. 2020. V. 10. Art. 8738. https://doi.org/10.3390/app10238738
- Rorrer G. L., Chang C. H., Liu S. H., Jeffryes C., Jiao J., Hedberg J. A. Biosynthesis of silicon-germanium oxide nanocomposites by the marine diatom Nitzschia frustulum // J. Nanosci. Nanotechnol. 2005. V. 5. P. 41–49. https://doi.org/10.1166/jnn.2005.005
- Rorrer G. L. Functionalization of frustules from diatom cell culture for optoelectronic properties // Diatom nanotechnology: progress and emerging applications / Ed. Losic D. The Royal Society of Chemistry, 2017. P. 79–110. https://doi.org/10.1039/9781788010160-00079
- Roychoudhury P., Golubeva A., Dąbek P., Gloc M., Dobrucka R., Kurzydłowski K., Witkowski A. Diatom mediated production of fluorescent flower shaped silver-silica nanohybrid // Materials. 2021. V. 14. Art. 7284. https://doi.org/10.3390/ma14237284
- Roychoudhury P., Bose R., Dąbek P., Witkowski A. Photonic nano-/microstructured diatom based biosilica in metal modification and removal – a review // Materials. 2022a. V. 15. Art. 6597. https://doi.org/10.3390/ma15196597
- Roychoudhury P., Golubeva A., Dąbek P., Pryshchepa O., Sagandykova G., Pomastowski P., Gloc M., Dobrucka R., Kurzydłowski K., Buszewski B., Witkowski A. Study on biogenic spindle-shaped iron-oxide nanoparticles by Pseudostaurosira trainorii in field of laser desorption/ionization applications // Int. J. Mol. Sci. 2022b. V. 23. Art. 11713. https://doi.org/10.3390/ijms231911713
- Samsami S., Mohamadizaniani M., Sarrafzadeh M. H., Rene E. R., Firoozbahr M. Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives // Process. Saf. Environ. Prot. 2020. V. 143. P. 138–163. https://doi.org/10.1016/j.psep.2020.05.034
- Saoud H. A.A., Sprynskyy M., Pashaei R., Kawalec M., Pomastowski P., Buszewski B. Diatom biosilica: source, physical-chemical characterization, modification, and application // J. Sep. Sci. 2022. V. 45. P. 3362–3376. https://doi.org/10.1002/jssc.202100981
- Sarkar A. K., Pal A., Ghorai S., Mandre N. R., Pal S. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid) // Carbohydr. Polym. 2014. V. 111. P. 108–115. https://doi.org/10.1016/j.carbpol.2014.04.042
- Sasirekha R., Sheena T. S., Deepika S. M., Santhanam P., Townley H. E., Jeganathan K., Kumar S. D., Premkumar K. Surface engineered Amphora subtropica frustules using chitosan as a drug delivery platform for anticancer therapy // Mater. Sci. Eng. C. 2019. V. 94. P. 56–64. https://doi.org/10.1016/j.msec.2018.09.009
- Sbihi K., Cherifi O., El Gharmali A., Oudra B., Aziz F. Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: a laboratory study // J. Mat. Environ. Sci. 2012. V. 3. P. 497–506.
- Schmid A. M.M., Schulz D. Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles // Protoplasma. 1979. V. 100. P. 267–288. https://doi.org/10.1007/BF01279316
- Selvaraj V., Muthukumar A., Nagamony P., Chinnuswamy V. Detection of typhoid fever by diatom-based optical biosensor // Environ. Sci. Pollut. Res. Int. 2018. V. 25. P. 20385–20390. https://doi.org/10.1007/s11356-017-9362-1
- Sharma J., Sharma S., Soni V. Classification and impact of synthetic textile dyes on aquatic flora: a review // Reg. Stud. Mar. Sci. 2021. V. 45. Art. 101802. https://doi.org/10.1016/j.rsma.2021.101802
- Sibbald S. J., Archibald J. M. Genomic insights into plastid evolution // Genome Biol. Evol. 2020. V. 12. P. 978–990. https://doi.org/10.1093/gbe/evaa096
- Skolem L. M.B. Biosynthesis and characterization of Ti-doped silica-based nanostructures formed by the diatoms Pinnularia sp. and Coscinodiscus wailesii / Master thesis, 27.06.2011. Norwegian University of Science and Technology Repository, 2011. http://hdl.handle.net/11250/245760
- Smetacek V. Diatoms and the ocean carbon cycle // Protist. 1999. V. 150. P. 25–32. https://doi.org/10.1016/S1434-4610(99)70006-4
- Sodhi K. K., Mishra L. C., Singh C. K., Kumar M. Perspective on the heavy metal pollution and recent remediation strategies // Curr. Res. Microb. Sci. 2022. V. 3. Art. 100166. https://doi.org/10.1016/j.crmicr.2022.100166
- Sprynskyy M., Pomastowski P., Hornowska M., Król A., Rafińska K., Buszewski B. Naturally organic functionalized 3D biosilica from diatom microalgae // Mater. Des. 2017. V. 132. P. 22–29. https://doi.org/10.1016/j.matdes.2017.06.044
- Sprynskyy M., Szczyglewska P., Wojtczak I., Nowak I., Witkowski A., Buszewski B., Feliczak-Guzik A. Diatom biosilica doped with palladium(II) chloride nanoparticles as new efficient photocatalysts for methyl orange degradation // Int. J. Mol. Sci. 2021. V. 22. Art. 6734. https://doi.org/10.3390/ijms22136734
- Squire K., Kong X., LeDuff P., Rorrer G. L., Wang A. X. Photonic crystal enhanced fluorescence immunoassay on diatom biosilica // J. Biophotonics. 2018. V. 11. Art. e201800009. https://doi.org/10.1002/jbio.201800009
- Squire K. J., Zhao Y., Tan A., Sivashanmugan K., Kraai J. A., Rorrer G. L., Wang A. X. Photonic crystal-enhanced fluorescence imaging immunoassay for cardiovascular disease biomarker screening with machine learning analysis // Sens. Actuators. B. 2019. V. 290. P. 118–124. https://doi.org/10.1016/j.snb.2019.03.102
- Stiller J. W., Schreiber J., Yue J., Guo H., Ding Q., Huang J. The evolution of photosynthesis in chromist algae through serial endosymbioses // Nat. Commun. 2014. V. 5. Art. 5764. https://doi.org/10.1038/ncomms6764
- Sumper M. Biomimetic patterning of silica by long-chain polyamines // Angew. Chem. 2004. V. 43. P. 2251–2254. https://doi.org/10.1002/anie.200453804
- Terracciano M., De Stefano L., Rea I. Diatoms green nanotechnology for biosilica-based drug delivery systems // Pharmaceutics. 2018. V. 10. Art. 242. https://doi.org/10.3390/pharmaceutics10040242
- Thakkar M., Randhawa V., Mitra S., Wei L. Synthesis of diatom-FeOx composite for removing trace arsenic to meet drinking water standards // J. Colloid. Interface. Sci. 2015. V. 457. P. 169–173. https://doi.org/10.1016/j.jcis.2015.07.003
- Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // J.M.S. Pure. Appl. Chem. 2015. V. 87. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
- Townley H. E., Woon K. L., Payne F. P., White-Cooper H., Parker A. R. Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate // Nanotechnol. 2007. V. 18. Art. 295101. https://doi.org/10.1088/0957-4484/18/29/295101
- Tramontano C., Chianese G., Terracciano M., de Stefano L., Rea I. Nanostructured biosilica of diatoms: from water world to biomedical applications // Appl. Sci. 2020. V. 10. Art. 6811. https://doi.org/10.3390/app10196811
- Van Eynde E., Lenaerts B., Tytgat T., Verbruggen S. W., Hauchecorne B., Blust R., Lenaerts S. Effect of pretreatment and temperature on the properties of Pinnularia biosilica frustules // RSC AdV. 2014. V. 4. P. 56200–56206. https://doi.org/10.1039/C4RA09305D
- Van Eynde E., Hu Z. Y., Tytgat T., Verbruggen S. W., Watté J., Van Tendeloo G., Van Driessche I., Blust R., Lenaerts S. Diatom silica–titania photocatalysts for air purification by bio-accumulation of different titanium sources // Environ. Sci. Nano. 2016. V. 3. P. 1052–1061. https://doi.org/10.1039/C6EN00163G
- Vasani R. B., Losic D., Cavallaro A., Voelcker N. H. Fabrication of stimulus-responsive diatom biosilica microcapsules for antibiotic drug delivery // J. Mater. Chem. B. 2015. V. 3. P. 4325–4329. https://doi.org/10.1039/c5tb00648a
- Wang Y., Cai J., Jiang Y., Jiang X., Zhang D. Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives // Appl. Microbiol. Biotechnol. 2013. V. 97. P. 453–460. https://doi.org/10.1007/s00253-012-4568-0
- Wang Z., Zhao J., Liu S., Cui F., Luo J., Wang Y., Zhang S., Zhang C., Yang X. Cultured diatoms suitable for the advanced anode of lithium ion batteries // ACS Sustain. Chem. Eng. 2021. V. 9. P. 844–852. https://doi.org/10.1021/acssuschemeng.0c07484
- Werner D. Hemmung der chlorophyllsynthese und der NADP+-abhängigen glycerinaldehyd-3-phosphat-dehydrogenase durch germaniumsäure bei Cyclotella cryptica // Arch. Microbiol. 1967. V. 57. P. 51–60.
- Wisser D., Brückner S. I., Wisser F. M., Althoff-Ospelt G., Getzschmann J., Kaskel S., Brunner E. 1H-13C-29Si triple resonance and REDOR solid-state NMR-A tool to study interactions between biosilica and organic molecules in diatom cell walls // Solid. State. Nucl. Magn. Reson. 2015. V. 66. P. 33–39. https://doi.org/10.1016/j.ssnmr.2014.12.007
- Yang S., Wu R. S., Kong R. Y. Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol // Aquat. Toxicol. 2002. V. 59. P. 191–200. https://doi.org/10.1016/s0166-445x(01)00252-1
- Yu Y., Addai-Mensah J., Losic D. Functionalized diatom silica microparticles for removal of mercury ions // Sci. Technol. AdV. Mater. 2012. V. 13. Art. 015008. https://doi.org/10.1088/1468-6996/13/1/015008
- Zhang C., Wang X., Ma Z., Luan Z., Wang Y., Wang Z., Wang L. Removal of phenolic substances from wastewater by algae. A review // Environ. Chem. Lett. 2020. V. 18. P. 377–392. https://doi.org/10.1007/s10311-019-00953-2
- Zhang G., Jiang W., Wang L., Liao X., Liu P., Deng X., Li J. Preparation of silicate-based red phosphors with a patterned nanostructure via metabolic insertion of europium in marine diatoms // Mater. Lett. 2013. V. 110. P. 253–255. https://doi.org/10.1016/j.matlet.2013.08.045
- Zhou H., Fan T., Li X., Ding J., Zhang D., Li X., Gao Y. Bio-inspired bottom-up assembly of diatom-templated ordered porous metal chalcogenide meso/nanostructures // Eur. J. Inorg. Chem. V. 2009. P. 211–215. https://doi.org/10.1002/ejic.200800764
- Zobi F. Diatom biosilica in targeted drug delivery and biosensing applications: recent studies // Micro. 2022. V. 2. P. 342–360. https://doi.org/10.3390/micro2020023
Қосымша файлдар
