Biosilica of diatom algae: synthesis, characteristics, modification and application in practical research

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The review presents the key results of the study of biosilica obtained from diatoms and its application in various fields of science and technology. The purpose of this review is to systematize data on the properties, modification methods and areas of application of this material. The data on the properties of biosilica are summarized and the main modification methods are considered, which can significantly expand the range of functional characteristics of this material. Particular attention is paid to the use of unmodified and modified biosilica in biomedicine as nanocouriers of drugs, materials for tissue regeneration, treatment of infected wounds, as well as biosensors and matrices for SERS analysis. Data on its effectiveness in environmental studies, such as wastewater treatment from heavy metals, organic dyes and phenols, are presented. New promising areas of application of biosilica are separately considered, including its use in energy, chromatographic analysis and other innovative areas. The review summarizes modern data and emphasizes the importance of developing new modification methods to expand the functionality of this unique material.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Golubeva

K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: aleksandra.golubeva.phd@gmail.com
Ресей, Moscow, 127276

M. Kulikovsky

K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: aleksandra.golubeva.phd@gmail.com
Ресей, Moscow, 127276

Әдебиет тізімі

  1. Гогорев Р. М., Чудаев Д. А., Степанова В. А., Куликовский М. С. Русский и английский терминологический словарь по морфологии диатомовых водорослей // Новости систематики низших растений. 2018. Т. 52. № 2. С. 265–309. https://doi.org/10.31111/nsnr/2018.52.2.265
  2. Куликовский М. С., Глущенко А. М., Генкал С. И., Кузнецова И. В. Определитель диатомовых водорослей России. Ярославль: Общество с ограниченной ответственностью “Филигрань”, 2016. 804 с.
  3. Al-Quraishi D.O., Abbas I. K. Removing heavy metals by diatoms Nitzschia palea and Navicula incerta in their aqueous solutions // Plant. Arch. 2019. V. 19. P. 272–278.
  4. Ali D. M., Divya C., Gunasekaran M., Thajuddin N. Biosynthesis and characterization of silicon-germanium oxide nanocomposite by diatom // Dig. J. Nanomater. Biostruct. 2011. V. 6. P. 117–120.
  5. Allen A. E., Dupont C. L., Oborník M., Horák A., Nunes-Nesi A., McCrow J.P., Zheng H., Johnson D. A., Hu H., Fernie A. R., Bowler C. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms // Nature. 2011. V. 473. P. 203–207. https://doi.org/10.1038/nature10074
  6. Ashour M., Alprol A. E., Khedawy M., Abualnaja K. M., Mansour A. T. Equilibrium and kinetic modeling of crystal violet dye adsorption by a marine diatom, Skeletonema costatum // Materials. 2022. V. 15. Art. 6375. https://doi.org/10.3390/ma15186375
  7. Aw M. S., Bariana M., Yu Y., Addai-Mensah J., Losic D. Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs // J. Biomater. Appl. 2013. V. 28. P. 163–174. https://doi.org/10.1177/0885328212441846
  8. Azam F., Hemmingsen B. B., Volcani B. E. Germanium incorporation into the silica of diatom cell walls // Arch. Mikrobiol. 1973. V. 92. P. 11–20. https://doi.org/10.1007/BF00409507
  9. Basharina T. N., Danilovtseva E. N., Zelinskiy S. N., Klimenkov I. V., Likhoshway Y. V., Annenkov V. V. The effect of titanium, zirconium and tin on the growth of diatom Synedra acus and morphology of its silica valves // Silicon. 2012. V. 4. P. 239–249. https://doi.org/10.1007/s12633-012-9119-x
  10. Bello O. S., Adegoke K. A., Oyewole R. O. Insights into the adsorption of heavy metals from wastewater using diatomaceous earth // Sep. Sci. Technol. 2014. V. 49. P. 1787–1806. https://doi.org/10.1080/01496395.2014.910223
  11. Benkhaya S., M’rabet S., El Harfi A. A review on classifications, recent synthesis and applications of textile dyes // Inorg. Chem. Commun. 2020. V. 115. Art. 107891. https://doi.org/10.1016/j.inoche.2020.107891
  12. Bose R., Roychoudhury P., Pal, R. In-situ green synthesis of fluorescent silica-silver conjugate nanodendrites using nanoporous frustules of diatoms: an unprecedented approach // Bioproc. Biosyst. Eng. 2021. V. 44. P. 1263–1273. https://doi.org/10.1007/s00449-021-02536-4
  13. Bowler C., Vardi A., Allen A. E. Oceanographic and biogeochemical insights from diatom genomes // Ann. ReV. Mar. Sci. 2010. V. 2. P. 333–365. https://doi.org/10.1146/annurev-marine-120308-081051
  14. Branco-Vieira M., San Martin S., Agurto C., Freitas M. A., Martins A. A., Mata T. M., Caetano N. S. Biotechnological potential of Phaeodactylum tricornutum for biorefinery processes // Fuel. 2020. V. 268. Art. 117357. https://doi.org/10.1016/j.fuel.2020.117357
  15. Briceño S., Chavez-Chico E.A., González G. Diatoms decorated with gold nanoparticles by in-situ and ex-situ methods for in vitro gentamicin release // Mater. Sci. Eng. C. 2021. V. 123. Art. 112018. https://doi.org/10.1016/j.msec.2021.112018
  16. Brunner E., Gröger C., Lutz K., Richthammer P., Spinde K., Sumper M. Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms // Appl. Microbiol. Biotechnol. 2009. V. 84. P. 607–616. https://doi.org/10.1007/s00253-009-2140-3
  17. Brzozowska W., Sprynskyy M., Wojtczak I., Dąbek P., Witkowski A., Buszewski B. “Outsourcing” diatoms in fabrication of metal-doped 3D biosilica // Materials. 2020. V. 13. Art. 2576. https://doi.org/10.3390/ma13112576
  18. Brzozowska W., Sprynskyy M., Wojtczak I., Dąbek P., Markuszewski M. J., Witkowski A., Buszewski B. Metabolically doping of 3D diatomaceous biosilica with titanium // Materials. 2022. V. 15. Art. 5210. https://doi.org/10.3390/ma15155210
  19. Camargo E., Jaime P. C.J., Lin C. F., Lin M. S., Yu T. Y., Wu M. C., Lai S. Y., Wang M. Y. Chemical and optical characterization of Psammodictyon panduriforme (Gregory) Mann comb. noV. (Bacillariophyta) frustules // Opt. Mater. Express. 2016. V. 6. P. 1436–1443. https://doi.org/10.1364/OME.6.001436
  20. Chauton M. S., Skolem L. M., Olsen L. M., Vullum P. E., Walmsley J., Vadstein O. Titanium uptake and incorporation into silica nanostructures by the diatom Pinnularia sp. (Bacillariophyceae) // J. Appl. Phycol. 2015. V. 27. P. 777–786. https://doi.org/10.1007/s10811-014-0373-8
  21. Chen Y. X., Liu H. C., Xie W. Q., Shen Z., Xia J. L., Nie Z. Y., Xie J. P. Diatom frustules decorated with Co nanoparticles for the advanced anode of Li‐ion batteries // Small. 2023. Art. 2300707. https://doi.org/10.1002/smll.202300707
  22. Cherifi O., Sbihi K., Bertrand M., Cherifi K. The removal of metals (Cd, Cu and Zn) from the Tensift river using the diatom Navicula subminuscula Manguin: a laboratory study // Int. J. AdV. Res. Biol. Sci. 2016. V. 3. P. 177–187. http://doi.org/10.22192/ijarbs.2016.03.10.024
  23. Chudzińska J., Woźniak B., Sprynskyy M., Nowak I., Feliczak-Guzik A. Photoremoval of bisphenol A using hierarchical zeolites and diatom biosilica // Int. J. Mol. Sci. 2023. V. 24. Art. 2878. https://doi.org/10.3390/ijms24032878
  24. Cicco S. R., Vona D., De Giglio E., Cometa S., Mattioli-Belmonte M., Palumbo F., Ragni R., Farinola G. M. Chemically modified diatoms biosilica for bone cell growth with combined drug-delivery and antioxidant properties // ChemPlusChem. 2015. V. 80. P. 1104–1112. https://doi.org/10.1002/cplu.201402398
  25. Cicco S. R., Vona D., Gristina R., Sardella E., Ragni R., Lo Presti M., Farinola G. M. Biosilica from living diatoms: investigations on biocompatibility of bare and chemically modified Thalassiosira weissflogii silica shells // Bioengineering. 2016. V. 3. Art. 35. https://doi.org/10.3390/bioengineering3040035
  26. Cicco S. R., Vona D., Leone G., De Giglio E., Bonifacio M. A., Cometa S., Fiore S., Palumbo F., Ragni R., Farinola G. M. In vivo functionalization of diatom biosilica with sodium alendronate as osteoactive material // Mater. Sci. Eng. C. 2019. V. 104. Art. 109897. https://doi.org/10.1016/j.msec.2019.109897
  27. Cong X., Mu Y., Qin D., Sun X., Su C., Chen T., Wang X., Chen X., Feng C. Copper deposited diatom-biosilica with enhanced photothermal and photodynamic performance for infected wound therapy // New J. Chem. 2022. V. 46. P. 2140–2154. https://doi.org/10.1039/D1NJ05283G
  28. Das B., Deka S., Patra S. Algae mediated technologies in biotreatment of phenolic wastewaters // An integration of phycoremediation processes in wastewater treatment / Eds. Shah M., Rodriguez-Couto S., De La Cruz C. B.V., Biswas J. Elsevier, 2022. P. 103–120. https://doi.org/10.1016/B978-0-12-823499-0.00016-X
  29. Davis A. K., Hildebrand M. A self-propagating system for Ge incorporation into nanostructured silica // Chem. Commun. 2008. V. 37. P. 4495–4497. https://doi.org/10.1039/b804955f
  30. De Tommasi E., De Luca A. C. Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics // Biomed. Opt. Express. 2022. V. 13. P. 3080–3101. https://doi.org/10.1364/BOE.457483
  31. Delalat B., Sheppard V. C., Rasi Ghaemi S., Rao S., Prestidge C. A., McPhee G., Rogers M. L., Donoghue J. F., Pillay V., Johns T. G., Kröger N., Voelcker N. H. Targeted drug delivery using genetically engineered diatom biosilica // Nat. Commun. 2015. V. 6. Art. 8791. https://doi.org/10.1038/ncomms9791
  32. Dhanker R., Saxena A., Tiwari A., Singh P. K., Patel A. K., Dahms H. U., Jiang-Shiou Hwang J. S., González-Meza G.M., Melchor-Martínez E.M., Iqbal H. M.N., Parra-Saldívar R. Towards sustainable diatom biorefinery: recent trends in cultivation and applications // Bioresour. Technol. 2024. V. 391. Art. 129905. https://doi.org/10.1016/j.biortech.2023.129905
  33. Dorrell R. G., Gile G., McCallum G., Méheust R., Bapteste E. P., Klinger C. M., Brillet-Guéguen L., Freeman K. D., Richter D. J., Bowler C. Chimeric origins of Ochrophytes and Haptophytes revealed through an ancient plastid proteom // eLife. 2017. V. 6. Art. e23717. https://doi.org/10.7554/eLife.23717
  34. Drum R. W., Pankratz H. S. Post mitotic fine structure of Gomphonema parvulum // J. Ultrastruct. Res. 1964. V. 10. P. 217–223. https://doi.org/10.1016/s0022-5320(64)80006-x
  35. Duan W., Du S., Meng F., Peng X., Peng L., Lin Y., Wang G., Wu J. The pathways by which the marine diatom Thalassiosira sp. OUC2 biodegrades p-xylene, combined with a mechanistic analysis at the proteomic level // Ecotoxicol. Environ. Saf. 2020. V. 198. Art. 110687. https://doi.org/10.1016/j.ecoenv.2020.110687
  36. Esfandyari J., Shojaedin-Givi B., Hashemzadeh H., Mozafari-Nia M., Vaezi Z., Naderi-Manesh H. Capture and detection of rare cancer cells in blood by intrinsic fluorescence of a novel functionalized diatom // Photodiagnosis Photodyn. Ther. 2020. V. 30. Art. 101753. https://doi.org/10.1016/j.pdpdt.2020.101753
  37. Falkowski P. G., Katz M. E., Milligan A. J., Fennel K., Cramer B. S., Aubry M. P., Berner R. A., Novacek M. J., Zapol W. M. The rise of oxygen over the past 205 million years and the evolution of large placental mammals // Science. 2005. V. 309. P. 2202–2204. https://doi.org/10.1126/science.1116047
  38. Fischer C., Adam M., Mueller A. C., Sperling E., Wustmann M., van Pée K. H., Kaskel S., Brunner E. Gold nanoparticle-decorated diatom biosilica: a favorable catalyst for the oxidation of D-glucose // ACS Omega. 2016. V. 1. P. 1253–1261. https://doi.org/10.1021/acsomega.6b00406
  39. Fuhrmann T., Landwehr S., El Rharbi-Kucki M., Sumper M. Diatoms as living photonic crystals // Appl. Phys. B. 2004. V. 78. P. 257–260. https://doi.org/10.1007/s00340-004-1419-4
  40. Gannavarapu K. P., Thakkar M., Veerapaga S., Wei L., Dandamudi R. B., Mitra S. Novel diatom-FeOx composite as highly active catalyst in photodegradation of Rhodamine-6G // Nanotechnol. ReV. 2018. V. 7. P. 247–255. https://doi.org/10.1515/ntrev-2017-0218
  41. Gélabert A., Pokrovsky O. S., Schott J., Boudou A., Feurtet-Mazel A. Cadmium and lead interaction with diatom surfaces: a combined thermodynamic and kinetic approach // Geochim. Cosmochim. Acta. 2007. V. 71. P. 3698–3716. https://doi.org/10.1016/j.gca.2007.04.034
  42. Gholami P., Khataee A., Bhatnagar A. Environmentally superior cleaning of diatom frustules using sono-Fenton process: facile fabrication of nanoporous silica with homogeneous morphology and controlled size // Ultrason. Sonochem. 2020. V. 64. Art. 105044. https://doi.org/10.1016/j.ultsonch.2020.105044
  43. Gnanamoorthy P., Anandhan S., Prabu V. A. Natural nanoporous silica frustules from marine diatom as a biocarrier for drug delivery // J. Porous Mater. 2014. V. 21. P. 789–796. https://doi.org/10.1007/s10934-014-9827-2
  44. Golubeva A., Roychoudhury P., Dąbek P., Pałczyńska J., Pryshchepa O., Piszczek P., Pomastowski P., Gloc M., Dobrucka R., Feliczak-Guzik A., Nowak I., Kurzydłowski K. J., Buszewski B., Witkowski A. A novel effective bio-originated methylene blue adsorbent: the porous biosilica from three marine diatom strains of Nanofrustulum spp. (Bacillariophyta) // Sci. Rep. 2023a. V. 13. P. 9168. https://doi.org/10.1038/s41598-023-36408-6
  45. Golubeva A., Roychoudhury P., Dąbek P., Pryshchepa O., Pomastowski P., Pałczyńska J., Piszczek P., Gloc M., Dobrucka R., Feliczak-Guzik A., Nowak I., Buszewski B., Witkowski A. Removal of the basic and diazo dyes from aqueous solution by the Frustules of Halamphora cf. salinicola (Bacillariophyta) // Mar. Drugs. 2023b. V. 21. Art. 312. https://doi.org/10.3390/md21050312
  46. Gröger C., Lutz K., Brunner E. Biomolecular self-assembly and its relevance in silica biomineralization // Cell. Biochem. Biophys. 2008a. V. 50. P. 23–39. https://doi.org/10.1007/s12013-007-9003-2
  47. Gröger C., Sumper M., Brunner E. Silicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: solid-state 29Si NMR and fluorescence microscopic studies // J. Struct. Biol. 2008b. V. 161. P. 55–63. https://doi.org/10.1016/j.jsb.2007.09.010
  48. Gumustas M., Sengel-Turk C.T., Gumustas A., Ozkan S. A., Uslu B. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems // Multifunctional systems for combined delivery, biosensing and diagnostics / Ed. Grumezescu A. M. Elsevier, 2017. P. 67–108. https://doi.org/10.1016/B978-0-323-52725-5.00005-8
  49. Gutu T., Gale D. K., Jeffryes C., Wang W., Chang C. H., Rorrer G. L., Jiao J. Electron microscopy and optical characterization of cadmium sulphide nanocrystals deposited on the patterned surface of diatom biosilica // J. Nanomater. 2009. Art. 860536. https://doi.org/10.1155/2009/860536
  50. Hadjar H., Hamdi B., Bachiller-Baeza B., Doña-Rodríguez J.M. Efficient sorption performance of carbon-diatomaceous silica compounds towards phenol // Surf. Interfaces. 2021. V. 24. Art. 101101. https://doi.org/10.1016/j.surfin.2021.101101
  51. He J., Chen D., Li Y., Shao J., Xie J., Sun Y., Yan Z., Wang J. Diatom-templated TiO2 with enhanced photocatalytic activity: Biomimetics of photonic crystals // Appl. Phys. A. 2013. V. 113. P. 327–332. https://doi.org/10.1007/s00339-013-7970-2
  52. Hedayatkhah A., Cretoiu M. S., Emtiazi G., Stal L. J., Bolhuis H. Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production // J. Environ. Manage. 2018. V. 227. P. 313–320. https://doi.org/10.1016/j.jenvman.2018.09.011
  53. Hernández-Ávila J., Salinas-Rodríguez E., Cerecedo-Sáenz E., Reyes-Valderrama M.I., Arenas-Flores A., Román-Gutiérrez A.D., Rodríguez-Lugo V. Diatoms and their capability for heavy metal removal by cationic exchange // Metals. 2017. V. 7. Art. 169. https://doi.org/10.3390/met7050169
  54. Hildebrand M., Davis A. K., Smith S. R., Traller J. C., Abbriano R. The place of diatoms in the biofuels industry // Biofuels. 2012. V. 3. P. 221–240. https://doi.org/10.4155/bfs.11.157
  55. Hildebrand M., Lerch S. J.L. Diatom silica biomineralization: parallel development of approaches and understanding // Semin. Cell. DeV. Biol. 2015. V. 46. P. 27–35. https://doi.org/10.1016/j.semcdb.2015.06.007
  56. Husain Q. Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review // Crit. ReV. Biotechnol. 2006. V. 26. P. 201–221. https://doi.org/10.1080/07388550600969936
  57. Janjua T. I., Cao Y., Kleitz K., Linden M., Yu C., Popat A. Silica nanoparticles: a review of their safety and current strategies to overcome biological barriers // AdV. Drug. DeliV. ReV. 2023. V. 203. Art. 115115. https://doi.org/10.1016/j.addr.2023.115115
  58. Jantschke A., Herrmann A. K., Lesnyak V., Eychmüller A., Brunner E. Decoration of diatom biosilica with noble metal and semiconductor nanoparticles (<10 nm): assembly, characterization, and applications // Chem. Asian. J. 2012. V. 7. P. 85–90. https://doi.org/10.1002/asia.201100563
  59. Javalkote V. S., Pandey A. P., Puranik P. R., Deshmukh P. K. Magnetically responsive siliceous frustules for efficient chemotherapy // Mater. Sci. Eng. C. 2015. V. 50. P. 107–116. https://doi.org/10.1016/j.msec.2015.01.079
  60. Jeffryes C., Gutu T., Jiao J., Rorrer G. L. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process // ACS Nano. 2008a. V. 2. P. 2103–2112. https://doi.org/10.1021/nn800470x
  61. Jeffryes C., Gutu T., Jiao J., Rorrer G. L. Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. // Mater. Sci. Eng. C. 2008b. V. 28. P. 107–118. https://doi.org/10.1016/j.msec.2007.01.002
  62. Jeffryes C., Solanki R., Rangineni Y., Wang W., Chang C. H., Rorrer G. L. Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium // AdV. Mater. 2008c. V. 20. P. 2633–2637. https://doi.org/10.1002/adma.200800292
  63. Johnston M. R., Gascooke J. R., Ellis A. V., Leterme S. C. Diatoms response to salinity changes: investigations using single pulse and cross polarisation magic angle spinning 29Si NMR spectra // The Analyst. 2018. V. 143. P. 4930–4935. https://doi.org/10.1039/c8an00948a
  64. Kamińska A., Sprynskyy M., Winkler K., Szymborski T. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma // Anal. Bioanal. Chem. 2017. V. 409. P. 6337–6347. https://doi.org/10.1007/s00216-017-0566-5
  65. Karaman E. S., Wang Z., Di Benedetto G., Zunino III J.L., Meng X., Mitra S. Fabrication of supercapacitors and flexible electrodes using biosilica from cultured diatoms // Mater. Today. Energy. 2019. V. 11. P. 166–173. https://doi.org/10.1016/j.mtener.2018.11.004
  66. Katheresan V., Kansedo J., Lau S. Y. Efficiency of various recent wastewater dye removal methods: a review // J. Environ. Chem. Eng. 2018. V. 6. P. 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
  67. Khan M. J., Rai A., Ahirwar A., Sirotiya V., Mourya M., Mishra S., Schoefs B., Marchand J., Bhatia S. K., Varjani S., Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations // Bioengineered. 2021. V. 12. P. 9531–9549. https://doi.org/10.1080/21655979.2021.1996748
  68. Kolbe F., Brunner E. Silicic acid uptake and storage by diatoms // The molecular life of diatoms / Eds. Falciatore A., Mock T. Springer, 2022. P. 345–365. https://doi.org/10.1007/978-3-030-92499-7_13
  69. Kong X., Squire K., Li E., LeDuff P., Rorrer G. L., Tang S., Chen B., McKay C., Navarro-Gonzalez R., Wang A. X. Chemical and biological sensing using diatom photonic crystal biosilica with in-situ growth plasmonic nanoparticles // IEEE Trans. Nanobiosci. 2016. V. 15. P. 828–834. https://doi.org/10.1109/TNB.2016.2636869
  70. Kraai J. A., Rorrer G. L., Wang A. X. Highly-porous diatom biosilica stationary phase for thin-layer chromatography // J. Chromatogr. A. 2019. V. 1591. P. 162–170. https://doi.org/10.1016/j.chroma.2019.01.037
  71. Kraai J. A., Wang A. X., Rorrer G. L. Photonic crystal enhanced SERS detection of analytes separated by ultrathin layer chromatography using a diatom frustule monolayer // AdV. Mater. Interfaces. 2020. V. 7. Art. 2000191. https://doi.org/10.1002/admi.202000191
  72. Kröger N., Lorenz S., Brunner E., Sumper M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis // Science. 2002. V. 298. P. 584–586. https://doi.org/10.1126/science.1076221
  73. Kröger N., Poulsen, N. Diatoms-from cell wall biogenesis to nanotechnology // Annu. ReV. Genet. 2008. V. 42. P. 83–107. https://doi.org/10.1146/annurev.genet.41.110306.130109
  74. Kumar S., Rechav K., Kaplan-Ashiri I., Gal A. Imaging and quantifying homeostatic levels of intracellular silicon in diatoms // Sci. AdV. 2020. V. 6. Art. eaaz7554. https://doi.org/10.1126/sciadv.aaz7554
  75. Kumari S., Min K. H., Kanth B. K., Jang E. K., Pack S. P. Production of TiO2-deposited diatoms and their applications for photo-catalytic degradation of aqueous pollutants // Biotechnol. Bioprocess. Eng. 2020. V. 25. P. 758–765. https://doi.org/10.1007/s12257-020-0019-4
  76. Lang Y., del Monte F., Rodriguez B. J., Dockery P., Finn D. P., Pandit A. Integration of TiO2 into the diatom Thalassiosira weissflogii during frustule synthesis // Sci. Rep. 2013. V. 3. Art. 3205. https://doi.org/10.1038/srep03205
  77. Lebeau T., Robert J. M. Diatom cultivation and biotechnologically relevant products. Part II: current and putative products // Appl. Microbiol. Biotechnol. 2003. V. 60. P. 624–632. https://doi.org/10.1007/s00253-002-1177-3
  78. Leone G., Vona D., Presti M. L., Urbano L., Cicco S., Gristina R., Palumbo F., Ragni R., Farinola G. M. Ca2+-in vivo doped biosilica from living Thalassiosira weissflogii diatoms: investigation on Saos-2 biocompatibility // MRS AdV. 2017. V. 2. P. 1047–1058. https://doi.org/10.1557/adv.2017.49
  79. Lettieri S., Setaro A., De Stefano L., De Stefano M., Maddalena P. The gas‐detection properties of light‐emitting diatoms // AdV. Funct. Mater. 2008. V. 18. P. 1257–1264. https://doi.org/10.1002/adfm.200701124
  80. Lewin J. Heterotrophy in diatoms // J. Gen. Microbiol. 1953. V. 9. P. 305–313. https://doi.org/10.1099/00221287-9-2-305
  81. Lewin J. Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth // Phycologia. 1996. V. 6. P. 1–12. https://doi.org/10.2216/i0031-8884-6-1-1.1
  82. Li R., Chen G. Z., Tam N. F., Luan T. G., Shin P. K., Cheung S. G., Liu Y. Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii // Ecotoxicol. Environ. Saf. 2009. V. 72. P. 321–328. https://doi.org/10.1016/j.ecoenv.2008.05.012
  83. Li K. M., Jiang J. G., Tian S. C., Chen X. J., Yan F. Influence of silica types on synthesis and performance of amine–silica hybrid materials used for CO2 capture // J. Phys. Chem. C. 2014. V. 118. P. 2454–2462. https://doi.org/10.1021/jp408354r
  84. Li J., Han J., Sun Q., Wang Y., Mu Y., Zhang K., Dou X., Kong M., Chen X., Feng C. Biosynthetic calcium-doped biosilica with multiple hemostatic properties for hemorrhage control // J. Mater. Chem. B. 2018. V. 6. P. 7834–7841. https://doi.org/10.1039/c8tb00667a
  85. Li H. Y., Lu Y., Zheng J. W., Yang W. D., Liu J. S. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis // Mar. Drugs. 2014. V. 12. P. 153–166. https://doi.org/10.3390/md12010153
  86. Liao Q., Sun J., Gao L. The adsorption of resorcinol from water using multi-walled carbon nanotubes // Colloids. Surf. A. 2008. V. 312. P. 160–165. https://doi.org/10.1016/j.colsurfa.2007.06.045
  87. Lin Z., Li J., Luan Y., Dai W. Application of algae for heavy metal adsorption: A 20-year meta-analysis // Ecotoxicol. Environ. Saf. 2020. V. 190. Art. 110089. https://doi.org/10.1016/j.ecoenv.2019.110089
  88. Liu Y., Guan Y., Gao Q., Tam N. F., Zhu W. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta // Chemosphere. 2010. V. 80. P. 592–599. https://doi.org/10.1016/j.chemosphere.2010.03.042
  89. Losic D., Yu Y., Aw M. S., Simovic S., Thierry B., Addai-Mensah J. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies // Chem. Commun. 2010. V. 46. P. 6323–6325. https://doi.org/10.1039/c0cc01305f
  90. Luo J., Liu P., Peng G., Tao Zhang J. Basic characterization and sputtering processing of diatom‐based anode materials // ChemistrySelect. 2023. V. 8. Art. e202204313. https://doi.org/10.1002/slct.202204313
  91. Machill S., Köhler L., Ueberlein S., Hedrich R., Kunaschk M., Paasch S., Schulze R., Brunner E. Analytical studies on the incorporation of aluminium in the cell walls of the marine diatom Stephanopyxis turris // BioMetals. 2013. V. 26. P. 141–150. https://doi.org/10.1007/s10534-012-9601-3
  92. Marella T. K., Saxena A., Tiwari A. Diatom mediated heavy metal remediation: a review // Bioresour. Technol. 2020. V. 305. Art. 123068. https://doi.org/10.1016/j.biortech.2020.123068
  93. Martin‐Jézéquel V., Hildebrand M., Brzezinski M. A. Silicon metabolism in diatoms: implications for growth // J. Phycol. 2000. V. 36. P. 821–840. https://doi.org/10.1046/j.1529-8817.2000.00019.x
  94. Milligan A. J., Morel F. M. A proton buffering role for silica in diatoms // Science. 2002. V. 297. P. 1848–1850. https://doi.org/10.1126/science.1074958
  95. Milović M., Simović S., Lošić D., Dashevskiy A., Ibrić S. Solid self-emulsifying phospholipid suspension (SSEPS) with diatom as a drug carrier // Eur. J. Pharm. Sci. 2014. V. 63. P. 226–232. https://doi.org/10.1016/j.ejps.2014.07.010
  96. Norberg A. N., Wagner N. P., Kaland H., Vullum-Bruer F., Svensson A. M. Silica from diatom frustules as anode material for Li-ion batteries // RSC AdV. 2019. V. 9. P. 41228–41239. https://doi.org/10.1039/c9ra07271c
  97. Nowak A. P., Sprynskyy M., Brzozowska W., Lisowska-Oleksiak A. Electrochemical behavior of a composite material containing 3D-structured diatom biosilica // Algal Res. 2019. V. 41. Art. 101538. https://doi.org/10.1016/j.algal.2019.101538
  98. O’Neill C., Hawkes F. R., Hawkes D. L., Lourenço N. D., Pinheiro H. M., Delée W. Colour in textile effluents – sources, measurement, discharge consents and simulation: a review // J. Chem. Technol. Biotechnol. 1999. V. 74. P. 1009–1018. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N
  99. Otzen D. The role of proteins in biosilicification // Scientifica. 2012. Art. 867562. https://doi.org/10.6064/2012/867562
  100. Pandit P., Rananaware P., D’Souza A., Kurkuri M. D., Brahmkhatri V. Functionalized diatom biosilica decorated with nanoparticles: synthesis, characterization, catalytic oxidation, and dye scavenging applications // J. Porous Mater. 2022. V. 29. P. 1369–1383. https://doi.org/10.1007/s10934-022-01262-w
  101. Peng J., Yuan J. P., Wu C. F., Wang J. H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health // Mar. Drugs. 2011. V. 9. P. 1806–1828. https://doi.org/10.3390/md9101806
  102. Petersen J., Teich R., Brinkmann H., Cerff R. A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to Haptophytes, Cryptophytes, Heterokonts, and Dinoflagellates // J. Mol. Evol. 2006. V. 62. P. 143–157. https://doi.org/10.1007/s00239-004-0305-3
  103. Poulsen N., Scheffel A., Sheppard V. C., Chesley P. M., Kröger N. Pentalysine clusters mediate silica targeting of silaffins in Thalassiosira pseudonana // J. Biol. Chem. 2013. V. 288. P. 20100–20109. https://doi.org/10.1074/jbc.M113.469379
  104. Pryshchepa O., Pomastowski P., Buszewski B. Silver nanoparticles: synthesis, investigation techniques, and properties // AdV. Colloid. Interface. Sci. 2020. V. 284. Art. 102246. https://doi.org/10.1016/j.cis.2020.102246
  105. Qin T., Gutu T., Jiao J., Chang C. H., Rorrer G. L. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum // ACS Nano. 2008a. V. 2. P. 1296–1304. https://doi.org/10.1021/nn800114q
  106. Qin T., Gutu T., Jiao J., Chang C. H., Rorrer G. L. Photoluminescence of silica nanostructures from bioreactor culture of marine diatom Nitzschia frustulum // J. Nanosci. Nanotechnol. 2008b. V. 8. P. 2392–2398. https://doi.org/10.1166/jnn.2008.241
  107. Rabsch U., Elbrächter M. Cadmium and zinc uptake, growth, and primary production in Coscinodiscus granii cultures containing low levels of cells and dissolved organic carbon // Helgol. Mar. Res. 1980. V. 33. P. 79–88. https://doi.org/10.1007/BF02414737
  108. Rafatullah M., Sulaiman O., Hashim R., Ahmad A. Adsorption of methylene blue on low-cost adsorbents: a review // J. Hazard. Mater. 2010. V. 177. P. 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047
  109. Raven J. A. The transport and function of silicon in plants // Biol. ReV. 1983. V. 58. P. 179–207. https://doi.org/10.1111/j.1469-185X.1983.tb00385.x
  110. Redan B. W., Jablonski J. E., Halverson C., Jaganathan J., Mabud M. A., Jackson L. S. Factors affecting transfer of the heavy metals arsenic, lead, and cadmium from diatomaceous-earth filter aids to alcoholic beverages during laboratory-scale filtration // J. Agric. Food. Chem. 2019. V. 67. P. 2670–2678. https://doi.org/10.1021/acs.jafc.8b06062
  111. Reid A., Buchanan F., Julius M., Walsh P. J. A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair // J. Mater. Chem. B. 2021. V. 9. P. 6728–6737. https://doi.org/10.1039/d1tb00322d
  112. Roche H. M. Unsaturated fatty acids // Proc. Nutr. Soc. 1999. V. 58. P. 397–401. https://doi.org/10.1017/s002966519900052x
  113. Rogato A., De Tommasi E. Physical, chemical, and genetic techniques for diatom frustule modification: applications in nanotechnology // Appl. Sci. 2020. V. 10. Art. 8738. https://doi.org/10.3390/app10238738
  114. Rorrer G. L., Chang C. H., Liu S. H., Jeffryes C., Jiao J., Hedberg J. A. Biosynthesis of silicon-germanium oxide nanocomposites by the marine diatom Nitzschia frustulum // J. Nanosci. Nanotechnol. 2005. V. 5. P. 41–49. https://doi.org/10.1166/jnn.2005.005
  115. Rorrer G. L. Functionalization of frustules from diatom cell culture for optoelectronic properties // Diatom nanotechnology: progress and emerging applications / Ed. Losic D. The Royal Society of Chemistry, 2017. P. 79–110. https://doi.org/10.1039/9781788010160-00079
  116. Roychoudhury P., Golubeva A., Dąbek P., Gloc M., Dobrucka R., Kurzydłowski K., Witkowski A. Diatom mediated production of fluorescent flower shaped silver-silica nanohybrid // Materials. 2021. V. 14. Art. 7284. https://doi.org/10.3390/ma14237284
  117. Roychoudhury P., Bose R., Dąbek P., Witkowski A. Photonic nano-/microstructured diatom based biosilica in metal modification and removal – a review // Materials. 2022a. V. 15. Art. 6597. https://doi.org/10.3390/ma15196597
  118. Roychoudhury P., Golubeva A., Dąbek P., Pryshchepa O., Sagandykova G., Pomastowski P., Gloc M., Dobrucka R., Kurzydłowski K., Buszewski B., Witkowski A. Study on biogenic spindle-shaped iron-oxide nanoparticles by Pseudostaurosira trainorii in field of laser desorption/ionization applications // Int. J. Mol. Sci. 2022b. V. 23. Art. 11713. https://doi.org/10.3390/ijms231911713
  119. Samsami S., Mohamadizaniani M., Sarrafzadeh M. H., Rene E. R., Firoozbahr M. Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives // Process. Saf. Environ. Prot. 2020. V. 143. P. 138–163. https://doi.org/10.1016/j.psep.2020.05.034
  120. Saoud H. A.A., Sprynskyy M., Pashaei R., Kawalec M., Pomastowski P., Buszewski B. Diatom biosilica: source, physical-chemical characterization, modification, and application // J. Sep. Sci. 2022. V. 45. P. 3362–3376. https://doi.org/10.1002/jssc.202100981
  121. Sarkar A. K., Pal A., Ghorai S., Mandre N. R., Pal S. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid) // Carbohydr. Polym. 2014. V. 111. P. 108–115. https://doi.org/10.1016/j.carbpol.2014.04.042
  122. Sasirekha R., Sheena T. S., Deepika S. M., Santhanam P., Townley H. E., Jeganathan K., Kumar S. D., Premkumar K. Surface engineered Amphora subtropica frustules using chitosan as a drug delivery platform for anticancer therapy // Mater. Sci. Eng. C. 2019. V. 94. P. 56–64. https://doi.org/10.1016/j.msec.2018.09.009
  123. Sbihi K., Cherifi O., El Gharmali A., Oudra B., Aziz F. Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: a laboratory study // J. Mat. Environ. Sci. 2012. V. 3. P. 497–506.
  124. Schmid A. M.M., Schulz D. Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles // Protoplasma. 1979. V. 100. P. 267–288. https://doi.org/10.1007/BF01279316
  125. Selvaraj V., Muthukumar A., Nagamony P., Chinnuswamy V. Detection of typhoid fever by diatom-based optical biosensor // Environ. Sci. Pollut. Res. Int. 2018. V. 25. P. 20385–20390. https://doi.org/10.1007/s11356-017-9362-1
  126. Sharma J., Sharma S., Soni V. Classification and impact of synthetic textile dyes on aquatic flora: a review // Reg. Stud. Mar. Sci. 2021. V. 45. Art. 101802. https://doi.org/10.1016/j.rsma.2021.101802
  127. Sibbald S. J., Archibald J. M. Genomic insights into plastid evolution // Genome Biol. Evol. 2020. V. 12. P. 978–990. https://doi.org/10.1093/gbe/evaa096
  128. Skolem L. M.B. Biosynthesis and characterization of Ti-doped silica-based nanostructures formed by the diatoms Pinnularia sp. and Coscinodiscus wailesii / Master thesis, 27.06.2011. Norwegian University of Science and Technology Repository, 2011. http://hdl.handle.net/11250/245760
  129. Smetacek V. Diatoms and the ocean carbon cycle // Protist. 1999. V. 150. P. 25–32. https://doi.org/10.1016/S1434-4610(99)70006-4
  130. Sodhi K. K., Mishra L. C., Singh C. K., Kumar M. Perspective on the heavy metal pollution and recent remediation strategies // Curr. Res. Microb. Sci. 2022. V. 3. Art. 100166. https://doi.org/10.1016/j.crmicr.2022.100166
  131. Sprynskyy M., Pomastowski P., Hornowska M., Król A., Rafińska K., Buszewski B. Naturally organic functionalized 3D biosilica from diatom microalgae // Mater. Des. 2017. V. 132. P. 22–29. https://doi.org/10.1016/j.matdes.2017.06.044
  132. Sprynskyy M., Szczyglewska P., Wojtczak I., Nowak I., Witkowski A., Buszewski B., Feliczak-Guzik A. Diatom biosilica doped with palladium(II) chloride nanoparticles as new efficient photocatalysts for methyl orange degradation // Int. J. Mol. Sci. 2021. V. 22. Art. 6734. https://doi.org/10.3390/ijms22136734
  133. Squire K., Kong X., LeDuff P., Rorrer G. L., Wang A. X. Photonic crystal enhanced fluorescence immunoassay on diatom biosilica // J. Biophotonics. 2018. V. 11. Art. e201800009. https://doi.org/10.1002/jbio.201800009
  134. Squire K. J., Zhao Y., Tan A., Sivashanmugan K., Kraai J. A., Rorrer G. L., Wang A. X. Photonic crystal-enhanced fluorescence imaging immunoassay for cardiovascular disease biomarker screening with machine learning analysis // Sens. Actuators. B. 2019. V. 290. P. 118–124. https://doi.org/10.1016/j.snb.2019.03.102
  135. Stiller J. W., Schreiber J., Yue J., Guo H., Ding Q., Huang J. The evolution of photosynthesis in chromist algae through serial endosymbioses // Nat. Commun. 2014. V. 5. Art. 5764. https://doi.org/10.1038/ncomms6764
  136. Sumper M. Biomimetic patterning of silica by long-chain polyamines // Angew. Chem. 2004. V. 43. P. 2251–2254. https://doi.org/10.1002/anie.200453804
  137. Terracciano M., De Stefano L., Rea I. Diatoms green nanotechnology for biosilica-based drug delivery systems // Pharmaceutics. 2018. V. 10. Art. 242. https://doi.org/10.3390/pharmaceutics10040242
  138. Thakkar M., Randhawa V., Mitra S., Wei L. Synthesis of diatom-FeOx composite for removing trace arsenic to meet drinking water standards // J. Colloid. Interface. Sci. 2015. V. 457. P. 169–173. https://doi.org/10.1016/j.jcis.2015.07.003
  139. Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // J.M.S. Pure. Appl. Chem. 2015. V. 87. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
  140. Townley H. E., Woon K. L., Payne F. P., White-Cooper H., Parker A. R. Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate // Nanotechnol. 2007. V. 18. Art. 295101. https://doi.org/10.1088/0957-4484/18/29/295101
  141. Tramontano C., Chianese G., Terracciano M., de Stefano L., Rea I. Nanostructured biosilica of diatoms: from water world to biomedical applications // Appl. Sci. 2020. V. 10. Art. 6811. https://doi.org/10.3390/app10196811
  142. Van Eynde E., Lenaerts B., Tytgat T., Verbruggen S. W., Hauchecorne B., Blust R., Lenaerts S. Effect of pretreatment and temperature on the properties of Pinnularia biosilica frustules // RSC AdV. 2014. V. 4. P. 56200–56206. https://doi.org/10.1039/C4RA09305D
  143. Van Eynde E., Hu Z. Y., Tytgat T., Verbruggen S. W., Watté J., Van Tendeloo G., Van Driessche I., Blust R., Lenaerts S. Diatom silica–titania photocatalysts for air purification by bio-accumulation of different titanium sources // Environ. Sci. Nano. 2016. V. 3. P. 1052–1061. https://doi.org/10.1039/C6EN00163G
  144. Vasani R. B., Losic D., Cavallaro A., Voelcker N. H. Fabrication of stimulus-responsive diatom biosilica microcapsules for antibiotic drug delivery // J. Mater. Chem. B. 2015. V. 3. P. 4325–4329. https://doi.org/10.1039/c5tb00648a
  145. Wang Y., Cai J., Jiang Y., Jiang X., Zhang D. Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives // Appl. Microbiol. Biotechnol. 2013. V. 97. P. 453–460. https://doi.org/10.1007/s00253-012-4568-0
  146. Wang Z., Zhao J., Liu S., Cui F., Luo J., Wang Y., Zhang S., Zhang C., Yang X. Cultured diatoms suitable for the advanced anode of lithium ion batteries // ACS Sustain. Chem. Eng. 2021. V. 9. P. 844–852. https://doi.org/10.1021/acssuschemeng.0c07484
  147. Werner D. Hemmung der chlorophyllsynthese und der NADP+-abhängigen glycerinaldehyd-3-phosphat-dehydrogenase durch germaniumsäure bei Cyclotella cryptica // Arch. Microbiol. 1967. V. 57. P. 51–60.
  148. Wisser D., Brückner S. I., Wisser F. M., Althoff-Ospelt G., Getzschmann J., Kaskel S., Brunner E. 1H-13C-29Si triple resonance and REDOR solid-state NMR-A tool to study interactions between biosilica and organic molecules in diatom cell walls // Solid. State. Nucl. Magn. Reson. 2015. V. 66. P. 33–39. https://doi.org/10.1016/j.ssnmr.2014.12.007
  149. Yang S., Wu R. S., Kong R. Y. Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol // Aquat. Toxicol. 2002. V. 59. P. 191–200. https://doi.org/10.1016/s0166-445x(01)00252-1
  150. Yu Y., Addai-Mensah J., Losic D. Functionalized diatom silica microparticles for removal of mercury ions // Sci. Technol. AdV. Mater. 2012. V. 13. Art. 015008. https://doi.org/10.1088/1468-6996/13/1/015008
  151. Zhang C., Wang X., Ma Z., Luan Z., Wang Y., Wang Z., Wang L. Removal of phenolic substances from wastewater by algae. A review // Environ. Chem. Lett. 2020. V. 18. P. 377–392. https://doi.org/10.1007/s10311-019-00953-2
  152. Zhang G., Jiang W., Wang L., Liao X., Liu P., Deng X., Li J. Preparation of silicate-based red phosphors with a patterned nanostructure via metabolic insertion of europium in marine diatoms // Mater. Lett. 2013. V. 110. P. 253–255. https://doi.org/10.1016/j.matlet.2013.08.045
  153. Zhou H., Fan T., Li X., Ding J., Zhang D., Li X., Gao Y. Bio-inspired bottom-up assembly of diatom-templated ordered porous metal chalcogenide meso/nanostructures // Eur. J. Inorg. Chem. V. 2009. P. 211–215. https://doi.org/10.1002/ejic.200800764
  154. Zobi F. Diatom biosilica in targeted drug delivery and biosensing applications: recent studies // Micro. 2022. V. 2. P. 342–360. https://doi.org/10.3390/micro2020023

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diversity of diatom morphology: Nitzschia portulata Lange-Bertalot & Kulikovskiy (a); Sellaphora amicula Kulikovskiy, Metzeltin & Lange-Bertalot (b); Caloneis tarag Kulikovskiy, Lange-Bertalot & Metzeltin (c); Skabitschewskia ruppeliana Kuliskovskiy & Lange-Bertalot (d); Campylodiscus fragilis Skvortsov (d); Amphorotia skabitschewskyi Glushchenko & Kulikovskiy (e).

Жүктеу (857KB)
3. Fig. 2. Schematic structure of the valve of centric (a) and pennate (b) diatoms (based on materials from Hildebrand, Lerch, 2015).

Жүктеу (231KB)
4. Fig. 3. Proposed mechanism of intracellular transport of cell wall-associated proteins (a); during biosilica formation inside silicon deposition vesicles (b) (SDV – silicon deposition vesicles, STV – SDV transport vesicles, SV – secretory vesicles, ER – endoplasmic reticulum; modified from Poulsen et al., 2013); and silica uptake from the external environment and its subsequent intracellular transport (c) (SITs – specific silicic acid transport protein, SSPs – internal silicon storage reservoirs, STV – silicon transport vesicles; modified from Kolbe, Brunner, 2022).

Жүктеу (979KB)
5. Fig. 4. Possible mechanism of metabolic incorporation of Ge (or Ti) metals into silica frustules of diatoms in vivo (based on materials from Rorrer, 2017).

Жүктеу (373KB)
6. Fig. 5. Fixation of nanoparticles on the surface of a biosilica shell: layer-by-layer deposition (a) and covalent bonding (b) (based on materials from Jantschke et al., 2012). Copyright © 2012 Wiley-VCH Verlag GmbH & Co., KGaA.

Жүктеу (231KB)

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».