Bioinformatic and functional analysis of the pSID siderophore biosynthesis plasmid of Rhodococcus pyridinivorans 5Ap

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Complete genome sequencing of R. pyridinivorans strain 5Ар revealed the pSID plasmid (CP063453.1) 250428 bp in size. The gene responsible for replication of this plasmid is, most probably, dnaB. The genes which may be involved in the replication (dnaB, ssb) and plasmid separation after replication (parA) showed the highest similarity to the determinants located on large (224‒343 kb) plasmids of rhodococci: unnamed1 of R. pyridinivorans YF3, unnamed1 of R. rhodochrous LH-B3, pRJH1 of R. pyridinivorans YC-JH2, pRDE01 of Rhodococcus sp. RDE2, and pRho-VOC14-C342 of R. opacus VOC-14. The pSID plasmid was found to contain two loci responsible for the synthesis of secondary metabolites, one of them determining the synthesis of a polyketide compound (similar sequences have been revealed on plasmids of other rhodococci) and the other one probably determines the synthesis of a siderophore: the genes for biosynthesis of this compound (sid1–5) exhibited the highest similarity (not exceeding 75%) with the sequences from Streptomyces vilmorinianum YP1 (CP040244.1), S. ficellus NRRL 8067 (CP034279.1), Streptomyces sp. NBC00162 (CP102509.1), and some other streptomycetes, while showing no similarity to the known siderophore biosynthesis genes of rhodococci. The locus of the pSID plasmid responsible for the siderophore synthesis had a unique organization, since transcription of the sid5 (iucC) gene occurs in the opposite direction, while in other bacteria it belongs to an operon and is located at one of its termini. Inactivation of the sid1 gene was found to result in decreased antagonistic activity of R. pyridinivorans 5Ар against plant-pathogenic bacteria P. carotovorum 2.18, lower resistance to iron and cadmium ions and arsenate, as well as in emergence of phytotoxic properties against radish, while wild-type bacteria exhibit plant growth-promoting activity.

Full Text

Restricted Access

About the authors

М. I. Mandryk

Belarusian State University

Author for correspondence.
Email: charnymi@bsu.by
Belarus, Minsk

А. А. Vysotskaya

Belarusian State University

Email: charnymi@bsu.by
Belarus, Minsk

Yu. V. Yahorava

Belarusian State University

Email: charnymi@bsu.by
Belarus, Minsk

D. U. Surzhyk

Belarusian State University

Email: charnymi@bsu.by
Belarus, Minsk

А. Yu. Larchenka

Belarusian State University

Email: charnymi@bsu.by
Belarus, Minsk

S. L. Vasylenko

Belarusian State University

Email: charnymi@bsu.by
Belarus, Minsk

References

  1. Глик Б., Пастернак Дж. Молекулярная биотехнология. М: Мир, 2002. 589 c.
  2. Мандрик М. И., Охремчук А. Э., Валентович Л. Н., Трушлис Э. В., Ларченко А. Ю., Василенко С. Л. Характеристика генетических локусов, определяющих деградацию фенола, в геноме бактерий Rhodococcus pyridinivorans 5Ap // Экспериментальная биология и биотехнология. 2024. №1. С. 27–40.
  3. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии: молекулярное клонирование. М.: Мир, 1984. 479 с.
  4. Мейнелл Дж., Мейнелл Э. Экспериментальная микробиология. М.: Мир, 1967. 320 c.
  5. Миллер Дж. Эксперименты в молекулярной генетике. М.: Мир, 1976. 436 с.
  6. Титок М. А. Плазмиды грамположительных бактерий. Минск: Изд-во БГУ, 2004. 120 с.
  7. Чернявская М. И. Характеристика штаммов нафталинутилизирующих бактерий рода Rhodococcus // Труды БГУ: Микробиология. 2016. Т. 11. Ч. 1. С. 190–197.
  8. Ahsan S., Kabir M. S. Linear plasmids and their replication // Stamford J. Microbiol. 2013. V. 2. P. 1‒5.
  9. Aznar A., Chen N. W., Rigault M., Riache N., Joseph D., Desmaële D., Mouille G., Boutet S., Soubigou-Taconnat L., Renou J. P., Thomine S., Expert D., Dellagi A. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores // Plant Physiol. 2014. V. 164. P. 2167‒2183.
  10. Blin K., Shaw S., Augustijn H.E, Reitz Z. L., Biermann F., Alanjary M., Fetter A., Terlouw B. R., Metcalf W. W., Helfrich E. J.N., van Wezel G. P., Medema M. H., Weber T. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualization // Nucl. Acids Res. 2023. V. 51. P. W46‒W50. https://doi.org/10.1093/nar/gkad344
  11. Bullock W. O. XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection // BioTechniques. 1987. V. 5. P. 376–378.
  12. Chan H. Y., Jensen S. O., LeBard R.J., Figgett W. A., Lai E., Simpson A. E., Brzoska A. J., Davies D. S., Connolly A. M., Cordwell S. J., Travis B. A., Salinas R., Skurray R. A., Firth N., Schumacher M. A. Molecular analysis of pSK1 par: a novel plasmid partitioning system encoded by staphylococcal multiresistance plasmids // J. Mol. Biol. 2022. V. 434. Art. 167770.
  13. Cserháti M., Kriszt B., Krifaton Cs., Szoboszlay S., Háhn J., Tóth Sz., Nagy I., Kukolya J. Mycotoxin-degradation profile of Rhodococcus strains // Int. J. Food Microbiol. 2013. V. 166. P. 176‒185.
  14. Dimkpa C. O., Svatoš A., Dabrowska P., Schmidt A., Boland W., Kothe E. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. // Chemosphere. 2008. V. 74. P. 19‒25.
  15. Grant J. R., Enns E., Marinier E., Mandal A., Herman E. K., Chen C., Graham M., Van Domselaar G., Stothard P. Proksee: in-depth characterization and visualization of bacterial genomes // Nucl. Acids Res. 2023. V. 51. P. W484‒W492. https://doi.org/10.1093/nar/gkad326
  16. Howland C. J., Rees C. E., Barth P. T., Wilkins B. M. The ssb gene of plasmid ColIb-P9 // J. Bacteriol. 1989. V. 171. P. 2466–2473.
  17. Iminova L., Delegan Y., Frantsuzova E., Bogun A., Zvonarev A., Suzina N., Anbumani S., Solyanikova I. Physiological and biochemical characterization and genome analysis of Rhodococcus qingshengii strain 7B capable of crude oil degradation and plant stimulation // Biotech. Rep. 2022. V. 35. Art. e00741.
  18. Ji C., Fan Yu, Zhao L. Review on biological degradation of mycotoxins // Animal Nutr. 2016. V. 2. P. 127‒133.
  19. Kriszt R., Krifaton C., Szoboszlay S., Cserháti M., Kriszt B., Kukolya J., Czéh Á., Fehér-Tóth S., Török L., Szőke Z., Kovács K. J., Barna T., Ferenczi S. New zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain // PLoS One. 2012. V. 7. Art. e43608.
  20. Kuhl T., Felder M., Nussbaumer T., Fischer D., Kublik S., Chowdhury P. S., Schloter M., Rothballer M. De novo genome assembly of a plant-associated Rhodococcus qingshengii strain (RL1) isolated from Eruca sativa Mill. and showing plant growth-promoting properties // Microbiol. Res. Announc. 2019. V. 8. Art. e01106-19. https://doi.org/10.1128/mra.01106-19
  21. Kundu D., Hazra C., Chaudhari A. Biodegradation of 2,6-dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: identification and toxicological analysis of metabolites and proteomic insights // Biocat. Agricul. Biotech. 2016. V. 8. P. 55‒65.
  22. Metcaff W. W., Jiang W., Wanner B. L. Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kgamma origin plasmids at different copy numbers // Gene. 1994. V. 138. P. 1–7.
  23. Oberto J. SyntTax: a web server linking synteny to prokaryotic taxonomy // BMC Bioinformatics. 2013. V. 14. https://doi.org/10.1186/1471-2105-14-4
  24. Presentato А., Piacenza E., Turner R. J., Zannoni D., Cappelletti M. Processing of metals and metalloids by Actinobacteria: cell resistance mechanisms and synthesis of metal (loid)-based nanostructures // Microorganisms. 2020. V. 8. Art. 2027.
  25. Roskova Z., Skarohlid R., McGachy L. Siderophores: an alternative bioremediation strategy? // Sci. Tot. Environ. 2022. V. 819. Art. 153144.
  26. Saha R., Saha N., Donofrio R. S., Bestervelt L L. Microbial siderophores: a mini review // J. Bas. Microbiol. 2013. V. 53. P. 303‒317.
  27. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum // Gene. 1994. V. 145. P. 69–73.
  28. Stevens V., Thijs S., McAmmond B., Langill T., Van Hamme J., Weyens N., Vangronsveld J. Draft genome sequence of Rhodococcus erythropolis VSD3, a diesel fuel-degrading and plant growth-promoting bacterium isolated from Hedera helix leaves // Gen. Announc. 2017. V. 5. https://doi.org/10.1128/genomea.01680-16
  29. te Riele H., Michel B., Ehrlich S. D. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus // Proc. Natl. Acad. Sci. USA. 1986. V. 83. P. 2541–2545.
  30. Turner S. L., Lilley A. K., Bailey M. J. Two dnaB genes are associated with the origin of replication of PQBR55, an exogenously isolated plasmid from the rhizosphere of sugar beet // FEMS Microbiol. Ecol. 2002. V. 42. P. 209–215.
  31. Vernikos G. S., Parkhill J. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands // Bioinf. 2006 V. 22. P. 2196‒2203.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Genetic map of the Psid plasmid. INP is the designation of protein-coding sequences, HGT Region is a region that was presumably introduced as a result of horizontal transfer.

Download (608KB)
3. Fig. 2. Organization of the siderophore biosynthesis cluster in different bacteria: 1 – plasmid pSID R. pyridinivorans 5Ар; 2 – Paenactinomyces guangxiensis s-10 (NZ_JACEIQ000000000.1); 3 – Streptomyces ficellus NRRL 8067 (CP034279.1); 4 – Myxococcus hansupus mixupus (CP012109.1).

Download (102KB)
4. Fig. 3. Effect of Rhodococcus bacteria on morphometric parameters of red radish sprouts. K1 – water; K2 – Meynell’s medium; 1 – 24-hour culture of R. pyridinivorans 5Ар bacteria; 2 – 48-hour culture of R. pyridinivorans 5Ар bacteria; 3 – 24-hour culture of R. pyridinivorans 5Ар RifR sid::pK18mob bacteria; 4 – 48-hour culture of R. pyridinivorans 5Ар RifR sid::pK18mob bacteria. * ‒ Differences from K1 are significant at p ≤ 0.05; ** ‒ Differences from K2 are significant at p ≤ 0.05; *** ‒ Differences from the wild type are significant at p ≤ 0.05. The height of the bars reflects the mean value, and the error bars represent the standard deviation.

Download (51KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».