Fungi of the Arctic Seas
- Authors: Kochkina G.A.1, Pinchuk I.P.1, Ivanushkina N.E.1, Avtukh A.N.1, Pimenov N.V.2
-
Affiliations:
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences
- Issue: Vol 93, No 3 (2024)
- Pages: 278-289
- Section: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0026-3656/article/view/265053
- DOI: https://doi.org/10.31857/S0026365624030039
- ID: 265053
Cite item
Abstract
The abundance and diversity of mycelial fungi in the bottom sediments of the Arctic Ocean seas (the Greenland, Barents and Kara seas) were studied. Samples of the surface bottom sediments were collected during the 84th (July‒August 2021) and 86th (October‒November 2021) cruises of RV Akademik Mstislav Keldysh. The taxonomic affiliation of the isolated fungi was determined using polyphasic taxonomy. The isolated fungi belonged to 16 genera of different classes of ascomycetous, basidiomycetous, and zygomycetous fungi. The effect of cultivation temperature and different NaCl concentrations on fungal growth was determined, as well as the effect of cultivation conditions on the fatty acid profile for the strains capable of growth on media with increased osmotic potential. While fatty acid composition was shown to be affected by changes in environmental conditions, the response to osmotic stress differed among the studied cultures from deep-sea sediments.
Full Text

About the authors
G. A. Kochkina
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences
Author for correspondence.
Email: gak@dol.ru
Russian Federation, Pushchino
I. P. Pinchuk
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences
Email: gak@dol.ru
Russian Federation, Pushchino
N. E. Ivanushkina
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences
Email: gak@dol.ru
Russian Federation, Pushchino
A. N. Avtukh
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences
Email: gak@dol.ru
Russian Federation, Pushchino
N. V. Pimenov
Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences
Email: gak@dol.ru
Russian Federation, Moscow
References
- Бубнова Е. Н., Бондаренко С. А., Георгиева М. Л. Первые сведения о грибах арктических морей Сибири // Труды VIII Международной научно-практической конференции “Морские исследования и образование (MARESEDU-2019)”. Т. I (III). Тверь: ООО “ПолиПРЕСС”, 2020. С. 383‒384.
- Бубнова Е. Н., Коновалова О. П. Грибы в донных грунтах Чукотского моря // Биология моря. 2019. Т. 45. № 2. С. 86‒96. https://doi.org/10.1134/S0134347519020025
- Бубнова Е. Н., Никитин Д. А. Грибы в донных грунтах Баренцева и Карского морей // Биология моря. 2017. Т. 43. С. 366‒371.
- Bubnova E. N., Nikitin D. A. Fungi in bottom sediments o the Barents and Kara Seas // Russ. J. Mar. Biol. 2017. V. 43. P. 400‒406.
- Конова И. В., Сергеева Я. Э., Галанина Л. А., Кочкина Г. А., Иванушкина Н. Е., Озерская С. М. Липогенез грибов Geomyces pannorum при воздействии стрессоров // Микробиология. 2009. Т. 78. С. 52‒58.
- Konova I. V., Sergeeva Ya.E., Galanina L. A., Kochkina G. A., Ivanushkina N E., Ozerskaya S. M. Lipid synthesis by Geomyces pannorum under the impact of stress factors // Microbiology (Moscow). 2009. V. 78. P. 42–47.
- Кочкина Г. А., Иванушкина Н. Е., Акимов В. Н., Гиличинский Д. А., Озерская С. М. Галопсихротолерантные грибы рода Geomyces из криопэгов и морских отложений Арктики // Микробиология. 2007. Т. 76. С. 39‒47.
- Kochkina G. A., Ivanushkina N. E., Akimov V. N., Gilchinsky D. A., Ozerskaya S. M. Halopsychrotolerant fungi of the genus Geomyces from cryopegs and marine sediments of the Arctic // Microbiology (Moscow). 2007. V. 76. P. 39–47.
- Кочкина Г. А., Озерская С. М., Иванушкина Н. Е., Чигинева Н. И., Василенко О. В., Спирина Е. В., Гиличинский Д. А. Разнообразие грибов деятельного слоя Антарктиды // Микробиология. 214. Т. 83. С. 236‒244. https://doi.org/10.7868/s002636561402013x
- Kochkina G. A., Ozerskaya S. M., Ivanushkina N. E., Chigineva N. I., Vasilenko O. V., Spirina E. V., Gilichinskii D. A. Fungal diversity in the Antarctic active layer // Microbiology (Moscow). 2014. V. 83. P. 94‒101.
- Мамаева Е. В., Галачьянц Ю. П., Хабудаев К. В., Петрова Д. П., Погодаева Т. В., Ходжер Т. В., Земская Т. И. Метагеномный анализ микробных сообществ донных осадков шельфа Карского моря и Енисейского залива // Микробиология. 2016. Т. 85. С. 187–198.
- Mamaeva E. V., Galach’yants Y.P., Khabudaev K. V., Petrova D. P., Pogodaeva T. V., Khodzher T. B., Zemskaya T. I. Metagenomic analysis of microbial communities of the sediments of the Kara Sea shelf and the Yenisei Bay // Microbiology (Moscow). 2016. V. 85. P. 220–230.
- Озерская С. М., Кочкина Г. А., Иванушкина Н. Е., Князева Е. В., Гиличинский Д. А. Структура комплексов микромицетов в многолетнемерзлых грунтах и криопэгах Арктики // Микробиология. 2008. Т. 77. С. 542‒550.
- Ozerskaya S. M., Kochkina G. A., Ivanushkina N. E., Knyazeva E. V., Gilichinskii D. A. The structure of micromycete complexes in permafrost and cryopegs of the Arctic // Microbiology (Moscow). 2008. Т. 77. P. 482‒489.
- Стахов В. Л., Губин С. В., Максимович С. В., Ребриков Д. А., Савилова А. М., Кочкина Г. А., Озерская С. М., Иванушкина Н. Е., Воробьева Е. А. Микробные сообщества древних семян, извлеченных из многолетнемерзлых плейстоценовых отложений // Микробиология. 2008. Т. 77. С. 396‒403.
- Stakhov V. L., Gubin S. V., Maksimovich S. V., Rebrikov D. V., Savilova A. M., Kochkina G. A., Ozerskaya S. M., Ivanushkina N. E., Vorobyova E. A. Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits // Microbiology (Moscow). 2008. V. 77. P. 348‒355.
- Хуснуллина А. И., Биланенко Е. Н., Кураков А. В. Микроскопические грибы донных грунтов Белого моря // Сибирский экологический журнал. 2018. Т. 25. С. 584‒598. https://doi.org/10.15372/SEJ20180507
- Khusnullina A. I., Bilanenko E. N., Kurakov A. V. Microscopic fungi of White Sea sediments // Contemp. Probl. Ecol. 2018. V. 11. P. 503‒513.
- Begmatov S., Savvichev A. S., Kadnikov V. V., Beletsky A. V., Rusanov I. I., Klyuvitkin A. A., Novichkova E. A., Mardanov A. V., Pimenov N. V. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the Barents Sea // Microorganisms. 2021. V. 9. Art. 2362. https://doi.org/10.3390/microorganisms9112362
- Burgaud G., Hué N. T.M., Arzur D., Coton M., Perrier-Cornet J.M., Jebbar M., Barbier G. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents // Res. Microbiol. 2015. V. 166. P. 700‒709. https://doi.org/10.1016/j.resmic.2015.07.005
- Carré L., Zaccai G., Delfosse X., Girard E., Franzetti B. Relevance of earth-bound extremophiles in the search for extraterrestrial life // Astrobiology. 2022. V. 22. P. 322‒367. https://hal.science/hal-03819312
- Cox F., Newsham K. K., Bol R., Dungait J. A.J., Robinson C. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic // Ecol. Lett. 2016. V. 19. P. 528–536. https://doi.org/10.1111/ele.12587
- de Hoog G. S., Zalar P., van den Ende B. G., Gunde-Cimerman N. Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress // Adaptation to life at high salt concentrations in Archaea / Eds. Gunde-Cimerman N., Oren A., Plemenitas A. Dordrecht: Springer, 2005. P. 371‒397.
- Ding Z., Li L., Che Q., Li D., Gu Q., Zhu T. Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica // Extremophiles. 2016. V. 20. P. 425–435. https://doi.org/10.1007/s00792-016-0833-y
- Hagestad O. C., Andersen J. H., Altermark B., Hansen E., Rämä T. Cultivable marine fungi from the Arctic Archipelago of Svalbard and their antibacterial activity // Mycology. 2020. V. 11. P. 230‒242. https://doi.org/10.1080/21501203.2019.1708492
- Hayashi Y., Eguchi H., Toibana T., Mitamura Y., Yaguchi T. Polymicrobial sclerokeratitis caused by Scedosporium apiospermum and Aspergillus cibarius // Cornea. 2014. V. 33. P. 75‒877.
- Ivanushkina N. E., Kochkina G. A., Ozerskaya S. M. Fungi in ancient permafrost sediments of the Arctic and Antarctic regions // Life in Ancient ice / Eds. J. Castello, S. Rogers. Ch. 9. Proc. Prins. Univ. Princeton: Princeton Univ. Press, 2005. P. 127‒139.
- Jin L., Quan C., Hou X., Fan S. Potential pharmacological resources: natural bioactive compounds from marine-derived fungi // Mar. Drugs. 2016. V. 14. Art. 76. https://doi.org/10.3390/md14040076
- Kochkina G. A., Ivanushkina N. E., Lupachev A. V., Starodumova I. P., Vasilenko O. V., Ozerskaya S. M. Diversity of mycelial fungi in natural and human-affected Antarctic soils // Polar Biol. 2019. V. 42. P. 47–64. https://doi.org/10.1007/s00300-018-2398-y
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. P. 1547‒1549. https://doi.org/10.1093/molbev/msy096
- Leong S. L. L., Lantz H., Pettersson O. V., Frisvad J. C., Thrane U., Heipieper H. J., Dijksterhuis J., Grabherr M., Pettersson M., Tellgren-Roth C., Schnürer J. Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date // Environ. Microbiol. 2015. V. 17. P. 496‒513.
- Luo M., Zang R., Wang X., Chen Z., Song X., Ju J., Huang H. Natural hydroxamate-containing siderophore acremonpeptides A–D and an aluminum complex of acremonpeptide D from the marine-derived Acremonium persicinum SCSIO 115 // J. Nat. Prod. 2019. V. 82. P. 2594‒2600. https://doi.org/10.1021/acs.jnatprod.9b00545
- Luo Y., Xu W., Luo Zh.-H., Pang K.-L. Diversity and temperature adaptability of cultivable fungi in marine sediments from the Chukchi Sea // Bot. Mar. 2020. V. 63. P. 197‒207. https://doi.org/10.1515/bot-2018–0119
- Margesin R., Miteva V. Diversity and ecology of psychrophilic microorganisms // Res. Microbiol. 2011. V. 162. P. 346‒361. https://doi.org/10.1016/j.resmic.2010.12.004
- Martorell M. M., Ruberto L. A.M., Fernandez P. M., De Figueroa L. I.C., Mac Cormack W. P. Biodiversity and enzymes bioprospection of Antarctic filamentous fungi // Antarct. Sci. 2019. V. 31. P. 3‒12. https://doi.org/10.1017/S0954102018000421
- Namsaraev Z., Kozlova A., Tuzov F., Krylova A., Izotova A., Makarov I., Bezgreshnov A., Melnikova A., Trofimova A., Kuzmin D., Patrushev M., Toshchakov S. Biogeographic analysis suggests two types of planktonic prokaryote communities in the Barents Sea // Biology. 2023. V. 12. Art. 1310. https://doi.org/10.3390/biology12101310
- Ogaki M. B., Pinto O. H.B., Vieira R., Neto A. A., Convey P., Carvalho-Silva M., Rosa C. A., Camara P., Rosa L. H. Fungi present in Antarctic deep-sea sediments assessed using DNA metabarcoding // Microb. Ecol. 2021. V. 82. P. 157‒164. https://doi.org/10.1007/s00248-020-01658-8
- Ozerskaya S., Kochkina G., Ivanushkina N., Gilichinsky D. Fungi in permafrost // Permafrost soils / Ed. R. Margesin (Austria). Berlin‒Heidelberg: Springer Verlag, 2009. P. 85‒95. https://doi.org/10.1007/978-3-540-69371-0_7
- Rapp J. Z., Fernández-Méndez M., Bienhold C., Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the Central Arctic Ocean // Front. Microbiol. 2018. V. 9. Art. 1035.
- Rice A. V., Currah R. S. Oidiodendron: A survey of the named species and related anamorphs of Myxotrichum // Stud. Mycol. 2005. V. 53. P. 83‒120. https://doi.org/10.3114/sim.53.1.83
- Ryvarden L., Melo I. Poroid fungi of Europe // Synopsis Fungorum. V. 37. Oslo: Fungiflora A/S, 2017. 431 p.
- Sarkar S., Singh N. A., Rai N. Xerophilic fungi: physiology, genetics and biotechnology // Extremophilic fungi / Eds. Sahay S. Singapore: Springer Nature, 2022. P. 253‒270.
- Savvichev A. S., Rusanov I. I., Kadnikov V. V., Beletsky A. V., Zakcharova E. E., Samylina O. S., Sigalevich P. A., Semiletov I. P., Ravin N. V., Pimenov N. V. Biogeochemical activity of methane-related microbial communities in bottom sediments of cold seeps of the Laptev Sea // Microorganisms. 2023. V. 11. Art. 250. https://doi.org/10.3390/microorganisms11020250
- Sayed A. M., Hassan M. H., Alhadrami H. A., Hassan H. M., Goodfellow M., Rateb M. E. Extreme environments: microbiology leading to specialized metabolites // J. Appl. Microbiol. 2020. V. 128. P. 630‒657. https://doi.org/10.1111/jam.14386
- Shukla S., Shukla H. Ecology, physiology, and diversity of piezophilic fungi // Extremophilic fungi / Singapore: Springer Nature Singapore, 2022. P. 141‒170. https://doi.org/10.1007/978-981-16-4907-3_8
- Simonato F., Campanaro S., Lauro F. M., Vezzi A., D’Angelo M., Vitulo N., Valle G., Bartlett D. H. Piezophilic adaptation: a genomic point of view // J. Biotechnol. 2006. V. 126. P. 11‒25. https://doi.org/10.1016/j.jbiotec.2006.03.038
- Wang Y. N., Meng L. H., Wang B. G. Progress in research on bioactive secondary metabolites from Deep-Sea derived microorganisms // Mar. Drugs. 2020. V. 18. Art. 614. https://doi.org/10.3390/md18120614
- Yurchenko A. N., Girich E. V., Yurchenko E. A. Metabolites of marine sediment-derived fungi: Actual trends of biological activity studies // Mar. Drugs. 2021. V. 19. P. 88. https://doi.org/10.3390/md19020088
Supplementary files
