Single-Stage Bioconversion of Phytosterol into Testosterone by Recombinant Strains of Mycolicibacterium neoaurum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A plasmid containing the genes of a fungal 17β-hydroxysteroid dehydrogenase, which catalyzes the reduction of the steroid core at the C17 position, and mycobacterial glucose-6-phosphate dehydrogenase, which promotes the recycling of the essential coenzyme NAD(P)H, was constructed. Its constitutive expression in well-studied Mycolicibacterium neoaurum strains made it possible to increase significantly the yield of C-17 hydroxysteroids. In particular, recombinant strains created on the basis of M. neoaurum VKM Ac-1815D and M. neoaurum NRRL B-3805 ΔkstD exhibited predominant accumulation of testosterone, while the strain based on M. neoaurum VKM Ac-1816D accumulated dehydrotestosterone and testosterone simultaneously.

Full Text

Restricted Access

About the authors

D. N. Tekucheva

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Author for correspondence.
Email: tekuchevadn@gmail.com
Russian Federation, Pushchino, 142290

M. V. Karpov

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: tekuchevadn@gmail.com
Russian Federation, Pushchino, 142290

V. V. Fokina

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: tekuchevadn@gmail.com
Russian Federation, Pushchino, 142290

T. I. Timakova

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: tekuchevadn@gmail.com
Russian Federation, Pushchino, 142290

A. A. Shutov

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: tekuchevadn@gmail.com
Russian Federation, Pushchino, 142290

M. V. Donova

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: tekuchevadn@gmail.com
Russian Federation, Pushchino, 142290

References

  1. Карпов М.В., Николаева В.М., Фокина В.В., Шутов А.А., Казанцев А.В., Стрижов Н.И., Донова М.В. Конструирование и функциональный катализ рекомбинантных штаммов Mycolicibacterium smegmatis, несущих гена бациллярных цитохромов CYP106A1 и CYP106A2 // Биотехнология. 2021. Т. 37. № 6. С. 34‒37.
  2. Karpov M.V., Nikolaeva V.M., Fokina V.V., Shutov A.A., Kazantsev A.V., Strizhov N.I., Donova M.V. Creation and functional analysis of Mycolicibacterium smegmatis recombinant strains carrying the bacillary cytochromes CYP106A1 and CYP106A2 genes // Appl. Biochem. Microbiol. 2022. V. 58. P. 947–957.
  3. Пошехонцева В.Ю., Стрижов Н.И., Карпов М.В., Николаева В.М., Казанцев А.В., Сазонова О.И., Шутов А.А., Донова М.В. Экспрессия синтетического гена CYP102A1-LG23 и функциональный анализ рекомбинантного цитохрома P450 BM3-LG23 в актинобактериях Mycolicibacterium smegmatis // Биохимия. 2023. Т. 88. С. 1631‒1641.
  4. Poshekhontseva V.Y., Strizhov N.I, Karpov M.V., Nikolaeva V.M., Kazantsev A.V., Sazonova O.I., Shutov A.A., Donova M.V. Expression of synthetic cyp102A1-LG23 gene and functional analysis of recombinant cytochrome P450 BM3-LG23 in the actinobacterium Mycolicibacterium smegmatis // Biochemistry (Moscow). 2023. V. 88. P. 1347‒1355.
  5. Borrego S., Niubó E., Ancheta O., Espinosa M.E. Study of the microbial aggregation in Mycobacterium using image analysis and electron microscopy // Tissue Cell. 2000. V. 32. P. 494–590.
  6. Bragin E., Shtratnikova V., Dovbnya D., Schelkunov M., Pekov Y., Malakho S., Egorova O., Ivashina T., Sokolov S., Ashapkin V., Donova M. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. Strains // J. Steroid Biochem. Mol. Biol. 2013. V. 138. P. 41–53.
  7. Daffe M., McNeil M., Brennan P.J. Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and Nocardia spp. // Carbohydr. Res. 1993. V. 249. P. 383–398.
  8. Donova M.V. Current trends and perspectives in microbial bioconversions of steroids // Microbial Steroids. Methods in Molecular Biology / Eds. Barreiro C., Barredo J.L.: New York: Humana Press., 2023. V. 2704. P. 3‒21.
  9. Egorova O., Nikolayeva V., Sukhodolskaya G., Donova M. Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium sp. // J. Mol. Catal. B. Enzym. 2009. V. 57. P. 198–203.
  10. Fernandez-Cabezon L., Galan B., Garcia J.L. Engineering Mycobacterium smegmatis for testosterone production // Microb. Biotechnol. 2017. V. 10. P. 151–161.
  11. Fufaeva S., Dovbnya D., Ivashina T., Shutov A., Donova M. Reconstruction of steroid 1(2)-dehydrogenation system from Nocardioides simplex VKM Ac-2033D in Mycolicibacterium hosts // Microorganisms. 2023. V. 11. Art. 2720.
  12. Garcia J.L., Uhia I., Galan B. Catabolism and biotechnological applications of cholesterol degrading bacteria // Microb. Biotechnol. 2012. V. 5. P. 679–699.
  13. He K., Sun H., Song H. Engineering phytosterol transport system in Mycobacterium sp. strain MS136 enhances production of 9-hydroxy-4-androstene-3,17-dione // Biotechnol. Lett. 2018. V. 40. P. 673–678.
  14. Hung B., Falero A., Llanes N., Pérez C., Ramirez M.A. Testosterone as biotransformation product in steroid conversion by Mycobacterium sp. // Biotechnol. Lett. 1994. V. 16. P. 497–500.
  15. Kumar R., Dahiya J.S., Singh D., Nigam P. Biotransformation of cholesterol using Lactobacillus bulgaricus in a glucose-controlled bioreactor // Bioresour. Technol. 2001. V. 78. P. 209–211.
  16. Lo C.K., Pan C.P., Liu W.H. Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp. // J. Ind. Microbiol. Biotechnol. 2002. V. 28. P. 280–283.
  17. Loraine J.K., Smith M.C.M. Genetic techniques for manipulation of the phytosterol biotransformation strain Mycobacterium neoaurum NRRL B-3805 // Microbial Steroids. Methods in Molecular Biology / Eds. Barredo J.L., Herráiz I. New York, NY: Springer New York, 2017. V. 1645. P. 93–108.
  18. Shao M., Zhao Y., Liu Y., Yang T., Xu M., Zhang X., Rao Z. Intracellular environment improvement of Mycobacterium neoaurum for enhancing androst-1,4-diene-3,17-dione production by manipulating NADH and reactive oxygen species levels // Molecules. 2019. V. 24. P. 3841.
  19. Strizhov N., Karpov M., Sukhodolskaya G., Nikolayeva V., Fokina V., Shutov A., Donova M. Development of mycobacterial strains producing testosterone // Proc. Natl. Acad. Sci. Belarus. Chemical Series. 2016. № 3. P. 57‒58.
  20. Su L., Shen Y., Gao T., Cui L., Luo J., Wang M. Regulation of NAD (H) pool by overexpression of nicotinic acid phosphoribosyltransferase for AD (D) production in Mycobacterium neoaurum // Lect. Notes Electr. Eng. 2018. V. 444. P. 357–364.
  21. Szentirmai A. Microbial physiology of sidechain degradation of sterols // J. Ind. Microbiol. 1990. V. 6. P. 101‒116.
  22. Tekucheva D.N., Nikolayeva V.M., Karpov M.V., Timakova T.A., Shutov A.V., Donova M.V. Bioproduction of testosterone from phytosterol by Mycolicibacterium neoaurum strains: “one-pot”, two modes // Bioresour. Bioprocess. 2022. V. 9. P. 116.
  23. Xiong L.B., Liu H.H., Zhao M., Liu Y.J., Song L., Xu Y.X., Wang F.Q., Wei D.Z. Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum // Microb. Cell Factories. 2020. V. 19. P. 1–11.
  24. Zhou X., Zhang Y., Shen Y., Zhang X., Zan Z., Xia M., Luo J., Wang M. Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle // Bioresour. Technol. 2020. V. 309. P. 123307.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Transformation of 5 g/l of phytosterol by the parent strains of M. neoaurum VKM Ac-1816D (1b), VKM Ac-1815D (2b), NRRL B-3805 ΔkstD (3b) and recombinant strains carrying a bicistronic genetic construct under the regulation of a constitutive promoter created on their basis (1a, 2a, 3a, respectively). The vertical dotted line indicates the moment of transition from the oxidative to the reducing mode. 1 — T; 2 — AD; 3 — ADD; 4 — dT.

Download (179KB)
3. Figure S1. Structure of the recombinant plasmid pMVN 2٥. Synthetic genes encoding ١٧β-HSD from Cochliobolus lunatus (17beta-HSDCl) and bacterial type 2 G6PDH from Mycobacterium tuberculosis H37Rv (G6PDMt2) were cloned in the pMV261N vector under the control of the constitutive promoter Phsp60. The plasmid contains a kanamycin resistance cassette (KanR) and replication initiation points in E.coli (oriE) and mycobacteria (oriM) cells.

Download (81KB)
4. Fig. S 2. Growth dynamics of the parent strains of M. neoaurum HCM Ac-١٨١٥D (١), Ac-١٨١٦D (2), NRRL B-٣٨٠٥ ΔkstD (3) and recombinant strains created on their basis by transformation by plasmid pMVN25 (N25)

Download (136KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies