Biodegradation Patterns of Composite Materials Based on High-Density Polyethylene and Starch

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract

—The degradation properties of high-density polyethylene composites filled with amylose and amylopectin polysaccharides were studied. At low dosages of the polysaccharides (0.5% wt/wt), no change in viscosity, molecular weight and physical and mechanical characteristics of HDPE samples were observed, while an increase in the proportion of the natural filler (starch) to 1 and 5% resulted in a decrease in mechanical properties, although the values of deformation and strength parameters satisfied the minimum necessary requirements for film packaging. After incubation in soil for one year, the sample of HDPE film with a corn starch content of 5% (wt/wt) was found to undergo the greatest changes in its properties. The study of ability of aerobic microorganisms to carry out the surface transformation of the studied film composites revealed that bacteria of the genus Bacillus efficiently colonized the polyethylene-starch composites. Among the identified microorganisms, micromycetes of the genus Penicillium and Trichoderma caused the most pronounced changes in the structure of the studied polymer composites, and the greatest effect was achieved in the case of synergistic action of different micromycetes genera.

Авторлар туралы

T. Suslova

PJSC “Nizhnekamskneftekhim”

Хат алмасуға жауапты Автор.
Email: a-r-x2010@mail.ru
Russia, 423574, Nizhnekamsk

I. Salakhov

PJSC “Nizhnekamskneftekhim”

Email: a-r-x2010@mail.ru
Russia, 423574, Nizhnekamsk

V. Nikonorova

PJSC “Nizhnekamskneftekhim”

Email: a-r-x2010@mail.ru
Russia, 423574, Nizhnekamsk

G. Gilaeva

PJSC “Nizhnekamskneftekhim”

Email: a-r-x2010@mail.ru
Russia, 423574, Nizhnekamsk

O. Trifonova

PJSC “Nizhnekamskneftekhim”

Email: a-r-x2010@mail.ru
Russia, 423574, Nizhnekamsk

Әдебиет тізімі

  1. Агзамов Р.З., Руссков Д.В., Минь Т.Т., Сироткин А.С., Спиридонова Р.Р. О биологической деградации полимерных композиций на основе полиэтилена // Вестник Казанского технологического университета. 2012. Т. 15. № 18. С. 155‒158.
  2. Agzamov R.Z., Russkov D.V., Min T.T., Sirotkin A.S., Spiridonova R.R. On the biological degradation of polymer compositions based on polyethylene // Bulletin of Kazan Technological University. 2012. V. 15. № 18. P. 155‒158.
  3. Баранцевич Е.П., Баранцевич Н.Е. Применение MALDI-TOF масс-спектрометрии в клинической микробиологии // Трансляционная медицина. 2014. № 6. С. 23‒28.
  4. Берсенева О.А. Кулемина О.А. Полимеры нового поколения // Современная химия: Успехи и достижения / Материалы II Межд. науч. конф. (г. Чита, 2016 г.). С. 27‒29.
  5. Berseneva O.A. Kulemina O.A. New generation polymers // Modern Chemistry: Successes and Achievements / Materials of the II Int. Sci. Conf. (Chita, 2016). P. 27‒29.
  6. Биоповреждения больничных зданий и их влияние на здоровье человека / Под ред. Щербо А.П., Антонова В.Б.. С.-Пб.: Изд-во С.-Пб. Мед. акад. послевуз. образов., 2008. С. 232.
  7. Bio-Damage of Hospital Buildings and Their Impact on Human Health / Ed. Shcherbo A.P., Antonova V.B. S.-Pb.: Publishing House S.-Pb. Honey. Acad. Postgraduate. Images, 2008. P. 232.
  8. Подкорытова А.В. Морские растительные биополимеры // Межд. научно-практическая конф. “Биотехнология и качество жизни”. Москва, 2014. С. 498‒499.
  9. Котова И.Б., Тактарова Ю.В., Цавкелова Е.А., Бонч-Осмоловская Е.А. Микробная деградация пластика и пути ее интенсификации // Микробиология. 2021. Т. 90. С. 627‒659.
  10. Kotova I.B. Taktarova Yu.V., Tsavkelova E.A., Bonch-Osmolovskaya E.A. Microbial degradation of plastics and approaches to make it more efficient // Microbiology (Moscow). 2021. V. 90. P. 671‒701.
  11. Литвинов М.А. Методы изучения почвенных микроскопических грибов. М.: Наука, 1969. 123 с.
  12. Литвинов М.А. Определитель микроскопических почвенных грибов. Л.: Наука, 1967. 303 с.
  13. Мазитова А.К., Аминова Г.К., Зарипов И.И., Вихарева И.Н. Биоразлагаемые полимерные материалы и модифицирующие добавки: современное состояние. Часть II // Нанотехнологии в производстве. Разработка новых полимерных материалов. 2021. Т. 13. С. 32‒38.https://doi.org/10.15828/2075-8545-2021-13-1-32-38
  14. https://takiedela.ru/news/2020/10/14/grinpis-plastikvotching-2/.
  15. Пaтeнт PФ 2669865C1. Composition for obtaining biodegradable polymer material and biodegradable polymer material on it is basis, 2016.
  16. Суслова Т.Н., Никонорова В.Н., Сосновская Л.Б., Гилаева Г.В., Салахов И.И. Оценка эффективности деструкции композиций на основе полиэтилена и крахмала // Вестник Казанского технологического университета. 2014. Т. 17. № 24. С. 120‒123.
  17. Suslova T.N., Nikonorova V.N., Sosnovskaya L.B., Gilaeva G.V., Salakhov I.I. Evaluation of the effectiveness of destruction of compositions based on polyethylene and starch // Bulletin of Kazan Technological University. 2014. V. 17. № 24. P. 120‒123.
  18. Тасекеев М.С., Еремеева Л.М. Производство биополимеров как один из путей решения проблем экологии и АПК: Аналит. обзор. Алматы: НЦ НТИ, 2009. С. 7.
  19. Aamer A.S. Biological degradation of plastics: a comprehensive review // Biotechnol. Adv. 2006. V. 26. P. 246‒265.
  20. Bensch K., Groenewald J.D., Dijksterhuis J., Starink-Willemse M., Andersen B., Summerell B.A., Shin H.-D., Dugan F.M., Schoroers H.-J., Braun U., Grous R.W. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales) // Stud. Mycol. 2010. V. 67. P. 1–94.https://doi.org/10.3114/sim.2010.67.01
  21. Blumenthal K., Bochaton L. Archive: Waste indicators on generation and landfilling ‒ monitoring sustainable development. – Access mode: Archive: Waste indicators on generation and landfilling – monitoring sustainable development – Statistics Explained (europa.eu) / Waste_indicators on generation and landfilling – monitoring sustainable development 2004‒2010‒2013.
  22. Encalada K., Aldás M.B., Proaño E., Valle V. An overview of starch-based biopolymers and their biodegradability // Revista Ciencia e Ingeniería. 2018. V. 39. P. 245‒258.
  23. Koutny M., Sancelme M., Dabin C., Pichon N., Delort A.-M., Lemaire J. Acquired biodegradability of polyethylenes containing pro-oxidant additives // Polym. Degrad. Stab. 2006. V. 91. P. 1495–1503. https://doi.org/10.1016/j.polymdegradstab.2005.10.007
  24. Dildi K.F.A. Linear low density polyethylene – biodegradability using bacteria from marine benthic environment and photodegradability using ultraviolet light // Environmental Science. Kerala, India. 2011.
  25. Nagarkar R., Patel J. Polyvinyl alcohol: a comprehensive study // Acta Sci. Pharm. Sciences. 2019. V. 3. № 4. P. 34‒44.
  26. Nafchi A.M., Moradpour M., Saeidi M., Alias A.K. Thermoplastic starches: Properties, challenges, and prospects // Starch. 2013. V. 65. P. 61–72.
  27. Nakamae K., Nakano S., Tanigawa S. // Jap. J. Polym. Sci. Technol. 1997. V. 54. № 8. P. 463‒470.
  28. Nowak B., Pajak J., Drozd-Bratkowicz M., Rymarz G. Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions // Int. Biodeter. Biodegr. 2011. V. 65. P. 757–767.
  29. Rajandas H., Parimannan S., Sathasivam K., Ravichandran M., Yin L.S. A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation // Polymer Testing. 2012. V. 31. P. 1094–1099.
  30. Raziyafatima M. Microbial degradation of plastic waste: a review // J. Pharma Chem. Biol. Sci. 2016. V. 4. P. 231‒242.
  31. Roy P.K., Titus S, Surekha P., Tulsi E., Deshmukh C., Rajagopal C. Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium // Polym. Degrad. Stab. 2008. V. 93. P. 1917–1922.
  32. Santo M., Weitsman R., Sivan A. The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber // Int. Biodeterior. Biodegr. 2013. V. 84. P. 204–210.
  33. Shah A.A. Biodergadation of natural and synthetic rubbers: a review // Int. Biodeterior. Biodegr. 2013. V. 83. P. 145‒157. https://doi.org/10.1016/j.ibiod.2013.05.004
  34. Shah A.A., Hasan F., Hameed A., Ahmed S. Biological degradation of plastics: A comprehensive review // Biotechnol. Adv. 2008. V. 26. P. 246–265.
  35. Sudhakar M., Doble M., Murthy P.S., Venkatesan R. Marine microbe-mediated biodegradation of low- and high-density polyethylenes // Int. Biodeterior. Biodegr. 2008. V. 61. P. 203–212.
  36. Wong P.K. Preparation and characterization of polymeric biocomposites using plant-based materials // A thesis submitted to the Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman. 2011. P. 175.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (2MB)
3.

Жүктеу (140KB)

© Т.Н. Суслова, И.И. Салахов, В.Н. Никонорова, Г.В. Гилаева, О.М. Трифонова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>