Compatible Solutes Accumulated by Glutamicibacter sp. Strain SMB32 in Response to Abiotic Environmental Factors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract

Proton magnetic resonance spectroscopy was used for investigation of the pool of compatible solutes accumulated in the cells of Glutamicibacter sp. strain SMB32 in response to abiotic environmental factors. The original habitat of the strain was anthropogenically salinated soil at the Verkhnekamsk deposit of potassium and magnesium salts (Perm krai, Russia). The strain grew within the temperature range from 5 to 35°C. At 5 and 32°C, the intracellular content of trehalose in the cells of Glutamicibacter sp. SMB32 was significantly higher than at 25°C. Glutamicibacter sp. SMB32 was able to grow both in the absence of NaCl and at its concentrations up to 11%. Glutamate predominated in the cells growth without NaCl. At high salinity (8% NaCl), predominant compounds in the studied strain cells were trehalose, proline, glutamine, and glutamate. Increasing salinity of the growth medium resulted in higher levels of intracellular proline. This is the first report of ability of a Glutamicibacter strain to synthesize mannitol; its accumulation was found to depend on the aeration mode. Thus, Glutamicibacter sp. strain SMB32 possesses high metabolic plasticity and is able to adapt to the action of unfavorable physicochemical factors.

About the authors

L. N. Anan’ina

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: ludaananyina@mail.ru
Russia, 614081, Perm,

A. A. Gorbunov

Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences

Email: ludaananyina@mail.ru
Russia, 614013, Perm

E. A. Shestakova

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences

Email: ludaananyina@mail.ru
Russia, 614081, Perm,

A. A. Pyankova

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences

Email: ludaananyina@mail.ru
Russia, 614081, Perm,

E. G. Plotnikova

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences

Email: ludaananyina@mail.ru
Russia, 614081, Perm,

References

  1. Василец Е.А. Условия промерзания почвы в Пермском крае // Географическое изучение территориальных систем: Сборник материалов XV Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых. Пермь, 11–12 мая 2021 г. / Под ред. Сафаряна А.А.. Пермь: Перм. гос. нац. исслед. ун-т, 2021. С. 153–157.
  2. Калабин Г.А., Каницкая Л.В., Кушнарев Д.Ф. Количественная спектроскопия ЯМР природного органического сырья и продуктов его переработки. М.: Химия, 2000. 408 с.
  3. Комарова Т.И., Коронелли Т.В., Тимохина Е.А. Роль низкомолекулярных азотистых соединений в осмотолерантности бактерий родов Rhodococcus и Arthrobacter // Микробиология. 2002. Т. 71. С. 166‒170.
  4. Komarova. T.I., Koronelli T.V., Timokhina E.A. The role of low-molecular-weight nitrogen compounds in the osmotolerance of Rhodococcus erythropolis and Arthrobacter globiformis // Microbiology (Moscow). 2002. V. 71. P. 139–142.
  5. Матвеева Н.И., Воронина Н.А., Борзенков И.А., Плакунов В.К., Беляев С.С. Состав и количественное содержание осмопротекторов в клетках нефтеокисляющих бактерий при разных условиях культивирования // Микробиология. 1997. Т. 66. С. 23‒27.
  6. Matveeva N.I., Voronina N.A., Borzenkov I.A., Plakunov V.K., Belyaev S.S. Composition and content of osmoprotectants in oil-oxidizing bacteria grown under different cultivation conditions // Microbiology (Moscow). 1997. V. 66. P. 32‒37.
  7. Назаров А.В., Ананьина Л.Н., Горбунов А.А., Пьянкова А.А. Бактерии-продуценты эктоина ризосферы растений, произрастающих на техногенной засоленной почве // Почвоведение. 2022. № 8. С. 1000‒1008.
  8. Nazarov A.V., Anan’ina L.N., Gorbunov A.A., Pyankova A.A. Bacteria producing ectoine in the rhizosphere of plants growing on technogenic saline soil // Euras. Soil Sci. 2022. V. 55. № 8. P. 1074‒1081.
  9. Ястребова О.В., Малышева А.А., Плотникова Е.Г. Галотолерантные бактерии рода Glutamicibacter – деструкторы терефталевой кислоты // Прикл. биохимия и микробиология. 2022. Т. 58. С. 476‒483.
  10. Yastrebova O.V., Malysheva A.A., Plotnikova E.G. Halotolerant terephthalic acid-degrading bacteria of the genus Glutamicibacter // Appl. Biochem. Microbiol. 2022. V. 58. P. 590–597.
  11. Anan’ina L.N., Kosheleva I.А., Plotnikova E.G. Bacterial consortium as a model for studying the response of the microbial community of the Verkhnekamsk salt mining region to combined pollution // Теоретическая и прикладная экология. 2022. № 2. С. 116‒123.
  12. Bernard T., Jebbar M., Rassouli Y., Himdi-Kabbab S., Hamelin J., Blanco C. Ectoine accumulation and osmotic regulation in Brevibacterium linens // J. Gen. Microbiol. 1993. V. 139. P. 129‒136.
  13. Brill J., Hoffmann T., Bleisteiner M., Bremer E. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity // J. Bacteriol. 2011. V. 193. P. 5335‒5346.
  14. Busse H.-J. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus // Int. J. Syst. Evol. Microbiol. 2016. V. 66. P. 9‒37.
  15. Busse H.-J., Wieser M., Buczolits S. // Bergey’s Manual of Systematics of Archaea and Bacteria / John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, 2012. Genus Arthrobacter. P. 1-71.https://doi.org/10.1002/9781118960608.gbm00118
  16. Cavicchioli R. On the concept of a psychrophile // ISME J. 2016. V. 10. P. 793–795.
  17. Chen X.-M., Jiang Y., Li Y.-T., Zhang H.-H., Li J., Chen X., Zhao Q., Zhao J., Si J., Lin Z.-W., Zhang H., Dyson P., An L.-Z. Regulation of expression of trehalose-6-phosphate synthase during cold shock in Arthrobacter strain A3 // Extremophiles. 2011. V. 15. P. 499–508.
  18. Dmitrieva O.A., Fedotova M.V., Buchner R. Evidence for cooperative Na+ and Cl− binding by strongly hydrated L-proline // Phys. Chem. Chem. Phys. 2017. V. 19. P. 20474‒20483.
  19. Feng W.-W., Wang T.-T., Bai J.-L., Ding P., Xing K., Jiang J.-H., Peng X., Qin S. Glutamicibacter halophytocola sp. nov., an endophytic actinomycete isolated from the roots of a coastal halophyte, Limonium sinense // Int. J. Syst. Evol. Microbiol. 2017. V. 67. P. 1120–1125.
  20. Friesen S., Fedotova M.V., Kruchinin S.E., Buchner R. Hydration and dynamics of l-glutamate ion in aqueous solution // Phys. Chem. Chem. Phys. 2021. V. 23. P. 1590‒1600.
  21. Galinski E.A. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection // Experientia. 1993. V. 49. P. 487–496.
  22. Gerhardt P. Manual of Methods for General Bacteriology. Washington, DC: American Society for Microbiology, 1981. 524 с.
  23. Hasegawa S., Uematsu K., Natsuma Y., Suda M., Hiraga K., Jojima T., Inui M., Yukawa H. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions // Appl. Environ. Microbiol. 2012. V. 78. P. 865e875.
  24. Hoch J.C., Baskaran K., Burr H., Chin J., Eghbalnia H.R., Fujiwara T., Gryk M.R., Iwata T., Kojima C., Kurisu G., Maziuk D., Miyanoiri Y., Wedell J.R., Wilburn C., Yao H., Yokochi M. Biological magnetic resonance data bank // Nucleic Acids Res. 2023. V. 51. D1. P. D368–D376.
  25. Jeong J.-A., Park S.W., Yoon D., Kim S., Kang H.-Y., Oh J.-I. Roles of alanine dehydrogenase and induction of its gene in Mycobacterium smegmatis under respiration-inhibitory conditions // J. Bacteriol. 2018. V. 200. P. e00152-18.
  26. Kumar N., Roy J.I. Effect of trehalose on protein structure // Protein Sci. 2009. V. 18. P. 24–36.
  27. Nagata S., Adachi K., Sano H. NMR analyses of compatible solutes in a halotolerant Brevibacterium sp. // Microbiology (SGM). 1996. V. 142. P. 3355–3362.
  28. Narváez-Reinaldo J.J., Barba I., González-López J., Tunnacliffe A., Manzanera M. Rapid method for isolation of desiccation-tolerant strains and xeroprotectants // Appl. Environ. Microbiol. 2010. V. 76. P. 5254–5262.
  29. Nishu S.D., Hyun H.R., Lee T.K. Complete genome sequence of drought tolerant plant growth-promoting rhizobacterium Glutamicibacter halophytocola DR408 // Korean J. Microbiol. 2019. V. 55. P. 300‒302.
  30. Qin S., Feng W.-W., Zhang Y.-J., Wang T.-T., Xiong Y.-W., Xing K. Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180 // Appl. Environ. Microbiol. 2018. V. 84. P. e01533–18.
  31. Raymond R.L. Microbial oxidation of n-paraffinic hydrocarbons // Develop. Ind. Microbiol. 1961. V. 2. P. 23–32.
  32. Santos R.G., Hurtado R., Gomes L.G.R., Profeta R., Rificie C., Attilif A.R., Spier S.J., Mazzullo G., Morais-Rodrigues F., Gomide A.C.P., Brenig B., Gala-Garciaa A., Cuteri V., de Paula Castro T.L., Ghosh P., Seyffert N., Azevedo V. Complete genome analysis of Glutamicibacter creatinolyticus from mare abscess and comparative genomics provide insight of diversity and adaptation for Glutamicibacter // Gene. 2020. V. 741. P. 144566.
  33. Singh R.N., Gaba S., Yadav A.N., Gaur P., Gulati S., Kaushik R., Saxena A.K. First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77 // Stand. Genomic Sci. 2016. V. 11. P. 54.
  34. Tritsch G.L., Moore G.E. Spontaneous decomposition of glutamine in cell culture media // Exp. Cell Res. 1962. V. 28. P. 360‒364.
  35. Wang H.-F., Li L., Zhang Y.-G., Hozzein W.N. Arthrobacter endophyticus sp. nov., an endophytic actinobacterium isolated from root of Salsola affinis // Int. J. Syst. Evol. Microbiol. 2015. V. 65. P. 2154–2160.
  36. Wise W.S. The measurement of the aeration of culture media // J. Gen. Microbiol. 1951. V. 5. P. 167‒177.
  37. Yamazaki T., Eyama S., Takatsu A. Concentration measurement of amino acid in aqueous solution by quantitative 1H NMR spectroscopy with internal standard method // Anal. Sci. 2017. V. 33. P. 369‒373.
  38. Yasid N.A., Rolfe M.D., Green J., Williamson M.P. Homeostasis of metabolites in Escherichia coli on transition from anaerobic to aerobic conditions and the transient secretion of pyruvate // Royal Soc. Open Sci. 2016. V. 3. P. rsos.160187.
  39. Zevenhuizen L.P. Levels of trehalose and glycogen in Arthrobacter globiformis under conditions of nutrient starvation and osmotic stress // Antonie van Leeuwenhoek. 1992. V. 61. P. 61‒68.
  40. Zhou Y., Han L.-R., He H.-W., Sang B., Yu D.-L., Feng J.-T., Zhang X. Effects of agitation, aeration and temperature on production of a novel glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and scale-up based on volumetric oxygen transfer coefficient // Molecules. 2018. V. 23. P. 125.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (180KB)
3.

Download (60KB)
4.

Download (75KB)
5.

Download (72KB)
6.

Download (130KB)
7.

Download (231KB)

Copyright (c) 2023 Л.Н. Ананьина, А.А. Горбунов, Е.А. Шестакова, А.А. Пьянкова, Е.Г. Плотникова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies