Physiological Characteristics of Saccharomyces cerevisiae Strain Overexpressing Polyphosphatase Ppx1

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract—The Ррх1 exopolyphosphatase of yeast is a constitutive protein localized predominantly in the cytoplasm. The purified enzyme hydrolyzes inorganic polyphosphates with high activity; however, in the knockout ∆ppx1 mutant of Saccharomyces cerevisiae the increase in the polyphosphate level was small, and no changes in physiological properties of this mutant were observed. To elucidate the functions of Ppx1, we studied the physiological characteristics of the S. cerevisiae strain overexpressing this enzyme. When cultivated in the YPD medium, the strain overexpressing Ppx1 showed no growth features different from those of the parental strain. The following physiological features of the strain overexpressing Ppx1 were observed at the stationary stage of growth: the level of ATP increased by nine times, the activity of vacuolar ATPase significantly decreased, and the sensitivity to peroxide increased compared to the parental strain. The level of reactive oxygen species doubled, while the degree of lipid oxidation remained the same as in parental strain. Since overexpression of Ppx1 under the culture conditions used did not affect the polyphosphate level, these polymers were not the regulators of the changes described above. Response to oxidative stress and vacuolar ATPase activity in yeasts is known to be regulated by cAMP, while Ppx1 is capable of hydrolyzing this signaling compound. We suggest that one of the functions of Ppx1 in yeasts is participation in the regulation of cAMP level.

Авторлар туралы

L. Trilisenko

Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”,
Skryabin Institute of Biochemistry and Physiology of Microorganisms,

Email: alla@ibpm.ru
Russia, 142290, Pushchino

A. Valiakhmetov

Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”,
Skryabin Institute of Biochemistry and Physiology of Microorganisms,

Email: alla@ibpm.ru
Russia, 142290, Pushchino

T. Kulakovskaya

Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”,
Skryabin Institute of Biochemistry and Physiology of Microorganisms,

Хат алмасуға жауапты Автор.
Email: alla@ibpm.ru
Russia, 142290, Pushchino

Әдебиет тізімі

  1. Андреева Н.А., Окороков Л.А. Некоторые свойства высокоочищенной полифосфатазы клеточной оболочки дрожжей Saccharomyces cerevisiae // Биохимия. 1990. Т. 55. С. 2286‒2292.
  2. Andreeva N.A., Okorokov L.A., Kulaev I.S. Purification and certain properties of cell envelope polyphosphatase of the yeast Saccharomyces carlsbergensis // Biochemistry (Moscow). 1990. V. 55. P. 819‒826.
  3. Калебина Т.С., Егоров С.Н., Арбатский Н.П., Безсонов Е.Е., Горковский А.А., Кулаев И.С. О роли высокомолекулярных полифосфатов в активации глюкантрансферазы Bgl2p из клеточной стенки дрожжей Saccharomyces cerevisiae // ДАН. 2008. Т. 420. С. 695‒699.
  4. Kalebina T.S., Egorov S.N., Arbatskii N.P., Bezsonov E.E., Gorkovskii A.A., Kulaev I.S. The role of high-molecular-weight polyphosphates in activation of glucan transferase Bgl2p from Saccharomyces cerevisiae cell wall // Dokl. Biochem. Biophys. 2008. V. 420. P. 142‒145.
  5. Кулаковская Т.В., Трилисенко Л.В., Личко Л.П., Вагабов В.М., Кулаев И.С. Влияние инактивации генов экзополифосфатазы РРХ1 и PPN1 на содержание полифосфатов различных фракций у Saccharomyces cerevis-iae // Микробиология. 2006. Т. 75. С. 35‒39.
  6. Kulakovskaya T.V., Trilisenko L.V., Lichko L.P., Vagabov V.M., Kulaev I.S. The effect of inactivation of the exo- and endopolyphosphatase genes PPX1 and PPN1 on the level of different polyphosphates in the yeast Saccharomyces cerevisiae // Microbiology (Moscow). 2006. V. 75. P. 25–28.
  7. Личко Л.П., Кулаковская Т.В., Кулаковская Е.В., Кулаев И.С. Инактивация генов PPX1 и PPN1, кодирующих экзополифосфатазы дрожжей Saccharomyces cerevisiae не препятствует использованию полифосфатов в качестве фосфорных резервов // Биохимия. 2008. Т. 73. С. 1224‒1229.
  8. Lichko L.P., Kulakovskaya T.V., Kulakovskaya E.V., Kulaev I.S. Inactivation of PPX1 and PPN1 genes encoding exopolyphosphatases of Saccharomyces cerevisiae does not prevent utilization of polyphosphates as phosphate reserve // Biochemistry (Moscow). 2008. V. 73. P. 985–989.
  9. Личко Л.П., Эльдаров М.А., Думина М.В., Кулаковская Т.В. Сверхэкспрессия гена PPX1 не влияет на полифосфаты Saccharomyces cerevisiae // Биохимия. 2014. Т. 79. С. 1487–1492.
  10. Lichko L.P., Eldarov M.A., Dumina M.V., Kulakovskaya T.V. PPX1 gene overexpression has no influence on polyphosphates in Saccharomyces cerevisiae // Biochemistry (Moscow). 2014. V. 79. P. 1211–1215.
  11. Ahmed Y., Ikeh M.A.C., MacCallum D.M., Day A.M., Waldron K., Quinn J. Blocking polyphosphate mobilization inhibits pho4 activation and virulence in the pathogen Candida albicans // mBio. 2022. V. 13. Art. e0034222. https://doi.org/10.1128/mbio.00342-22
  12. Andreeva N., Ledova L., Ryazanova L., Tomashevsky A., Kulakovskaya T., Eldarov M. Ppn2 endopolyphosphatase overexpressed in Saccharomyces cerevisiae: comparison with Ppn1, Ppx1, and Ddp1 polyphosphatases // Biochimie. 2019. V. 163. P. 101‒107.
  13. Bond S., Forgac M. The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar (H+)-ATPase in yeast // J. Biol. Chem. 2008. V. 283. P. 36 513‒36 521.
  14. Borst-Pauwels G.W., Peters P.H. Factors affecting the inhibition of yeast plasma membrane ATPase by vanadate // Biochim. Biophys. Acta. 1981. V. 642. P. 173‒181.
  15. Bowman E.J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells // Proc. Natl. Acad. Sci. USA. 1988. V. 85. P. 7972‒7976.
  16. Harris D.A. Azide as a probe of co-operative interactions in the mitochondrial F1-ATPase // Biochim. Biophys. Acta. 1989. V. 974. P. 156‒162.
  17. Heinonen J.K., Lahti R.J. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase // Anal. Biochem. 1981. V. 113. P. 313‒317.
  18. Gerasimaitė R., Sharma S., Desfougères Y., Schmidt A., Mayer A. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity // J. Cell. Sci. 2014. V. 127. P. 5093‒5104.
  19. Jakubowski H. Sporulation of the yeast Saccharomyces cerevisiae is accompanied by synthesis of adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate // Proc. Natl. Acad. Sci. USA. 1986. V. 83. P. 2378‒2382.
  20. Jin R., Dobry C.J., McCown P.J., Kumar A. Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression // Mol. Biol. Cell. 2008. V. 19. P. 284‒296.
  21. Khan M.M., Lee S., Couoh-Cardel S., Oot R.A., Kim H., Wilkens S., Roh S.H. Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner // EMBO J. 2022. V. 41. Art. e109360. https://doi.org/10.15252/embj.2021109360
  22. Kulaev I.S., Vagabov V.M. Polyphosphate metabolism in microorganisms // Adv. Microbiol. Physiol. 1983. V. 24. P. 83‒171.
  23. Kulakovskaya T. Inorganic polyphosphates and heavy metal resistance in microorganisms // World J. Microbiol. Biotechnol. 2018. V. 34. Art. 139. https://doi.org/10.1007/s11274-018-2523-7
  24. Lichko L., Kulakovskaya T., Pestov N., Kulaev I. Inorganic polyphosphates and exopolyphosphatases in cell compartments of the yeast Saccharomyces cerevisiae under inactivation of PPX1 and PPN1 genes // Biosci. Rep. 2006. V. 26. P. 45‒54.
  25. Lonetti A., Szijgyarto Z., Bosch D., Loss O., Azevedo C., Saiardi A. Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases // J. B-iol. Chem. 2011. V. 286. P. 31966‒31974.
  26. McCarthy L., Abramchuk I., Wafy G., Denoncourt A., Lavallée-Adam M., Downey M. Ddp1 cooperates with Ppx1 to counter a stress response initiated by nonvacuolar polyphosphate // mBio. 2022. V. 13. Art. e0039022. https://doi.org/10.1128/mbio.00390-22
  27. Miozzari G.F., Niederberger P., Hutter R. Permeabilization of microorganisms by Triton X-100 // Anal. Biochem. 1978. V. 90. P. 220‒233.
  28. Parra K.J., Chan C.Y., Chen J. Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals // Eukaryot. Cell. 2014. V. 13. P. 706‒714.
  29. Portela P., Rossi S. cAMP-PKA signal transduction specificity in Saccharomyces cerevisiae // Curr. Genet. 2020. V. 66. P. 1093‒1099. https://doi.org/10.1007/s00294-020-01107-6
  30. Roger F., Picazo C., Reiter W., Libiad M., Asami C., Hanzén S., Gao C., Lagniel G., Welkenhuysen N., Labarre J., Nyström T., Grotli M., Hartl M., Toledano M.B., Molin M. Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A // Elife. 2020. V. 9. Art. e60346. https://doi.org/10.7554/eLife.60346
  31. Sethuraman A., Rao N.N., Kornberg A. The endopolyphosphatase gene: essential in Saccharomyces cerevisiae // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 8542–8547.
  32. Tammenkoski M., MoiseevV.M., Lahti M., Ugochukwu E., Brondijk T.H.C., White S.A., Lahti R., Baykov A.A. Kinetic and mutational analyses of the major cytosolic exopolyphosphatase from Saccharomyces cerevisiae // J. Biol. Chem. 2007. V. 282. P. 9302‒9311.
  33. Tammenkoski M., Koivula K., Cusanelli E., Zollo M., Steegborn C., Baykov A.A., Lahti R. Human metastasis regulator protein H-prune is a short-chain exopolyphosphatase // Biochemistry. 2008. V. 47. P. 9707‒9713.
  34. Ugochukwu E., Lovering A.L., Mather O.C., Young T.W., White S.A. The crystal structure of the cytosolic exopolyphosphatase from Saccharomyces cerevisiae reveals the basis for substrate specificity // J. Mol. Biol. 2007. V. 371. P. 1007‒1021.
  35. Wurst H., Shiba T., Kornberg A. The gene for a major exopolyphosphatase of Saccharomyces cerevisiae // J. Bacteriol. 1995. V. 177. P. 898‒906.

Қосымша файлдар


© Л.В. Трилисенко, А.Я. Валиахметов, Т.В. Кулаковская, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».