Desulfobotulus pelophilus sp. nov., an Alkaliphilic Sulfate-Reducing Bacterium from a Terrestrial Mud Volcano

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—An alkaliphilic, sulfate-reducing, anaerobic bacterium (strain H1T) was isolated from a terrestrial mud volcano at the Taman Peninsula, Russia. The cells of the isolate were gram-negative motile vibrios, 1 µm in diameter and 2.0–2.5 μm in length. Strain H1T grew at 14–42°C (optimum at 37°C), pH 8.5–10.5 (optimum at pH 9.5), and NaCl concentrations of 0.5–6% (wt/vol) (optimum at 0.5–1.5%); pyruvate, lactate, butyrate, caproate, or pelargonate were used as electron donors, and elemental sulfur, sulfite, or sulfate were used as electron acceptors. Pyruvate and lactate were fermented. No growth occurred in the presence of oxygen. Thiosulfate, DMSO, fumarate, nitrate, nitrite, arsenate, selenite, and Fe(III) were not used as electron acceptors. Elemental sulfur, thiosulfate, and sulfite were not disproportionated. Glucose, fructose, sucrose, trehalose, galactose, xylose, fumarate, citrate, yeast extract, and peptone were not fermented. Predominant fatty acids were C20:0 (54.2%), C22:0 (24.6%), and C18:0 (11.1%). The genome of strain H1T was 3.66 Mb in size and had G + C DNA content of 51.1%. The genome contained the genes encoding the enzymes of dissimilatory sulfate reduction and β-oxidation of fatty acids. According to the results of analysis of the 16S rRNA gene sequence, Desulfobotulus mexicanus was the organism most closely related to strain Н1Т (98.3% similarity). Based on its phenotypic characteristics and the data of phylogenetic analysis, affiliation of the isolate as member of a novel Desulfobotulus species, Desulfobotulus pelophilus sp. nov., is proposed, with the type strain H1T (=DSM 112796T = VKM B-3697Т =UQM 41590T).

About the authors

A. A. Frolova

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Author for correspondence.
Email: romana2804@gmail.com
Russia, 119071, Moscow

A. Yu. Merkel

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Email: romana2804@gmail.com
Russia, 119071, Moscow

A. A. Kuchierskaya

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Email: romana2804@gmail.com
Russia, 119071, Moscow

A. I. Slobodkin

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Email: romana2804@gmail.com
Russia, 119071, Moscow

References

  1. Гнатенко Г.И., Кутний В.А., Науменко П.И., Соболевский Ю.В., Шнюков Е.Ф. Грязевые вулканы Керченско-Таманской области (атлас). Киев: Наукова Думка, 1986. 149 с.
  2. Холодов В.Н. Грязевые вулканы: распространение и генезис // Геология и полезные ископаемые мирового океана. 2012. Т. 4. С. 5–27.
  3. Alain K., Holler T., Musat F., Elvert M., Treude T., Krüger M. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania // Environ. Microbiol. 2006. V. 8. P. 574–590.
  4. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool // J. Mol. Biol. 1990. V. 215. P. 403‒410.
  5. Benson D.A., Boguski M.S., Lipman D.J., Ostell J., Ouellette B.F.F., Rapp B.A., Wheeler D.L. GenBank // Nucleic Acids Res. 1999. V. 27. P. 12–17.
  6. Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., Olson R., Overbeek R., Parrello B., Pusch G.D., Shukla M., Thomason J.A., Stevens R., Vonstein V., Wattam A.R., Xia F. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes // Sci. Rep. 2015. V. 5. P. 8365.
  7. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap // Evolution. 1985. V. 39. P. 783‒791.
  8. Frolova A.A., Merkel A.Y., Novikov A.A., Bonch-Osmolovskaya E.A., Slobodkin A.I. Anaerotalea alkaliphila gen. nov., sp. nov., an alkaliphilic, anaerobic, fermentative bacterium isolated from a terrestrial mud volcano // Extremophiles. 2021a. V. 25. P. 301‒309.
  9. Frolova A.A., Merkel A.Y., Kuchierskaya A.A., Bonch-Osmolovskaya E.A., Slobodkin A.I. Pseudodesulfovibrio alkaliphilus, sp. nov., an alkaliphilic sulfate-reducing bacterium isolated from a terrestrial mud volcano // Antonie van Leeuwenhoek. 2021b. V. 114. P. 1387‒1397.
  10. GBIF Secretariat (2021). GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei
  11. Khomyakova M.A., Merkel A.Y., Petrova D.A., Bonch-Osmolovskaya E.A., Slobodkin A.I. Alkalibaculum sporogenes sp. nov., isolated from a terrestrial mud volcano and emended description of the genus Alkalibaculum // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 4914–4919.
  12. Khomyakova M.A., Merkel A.Y., Kopitsyn D.S., Slobodkin A.I. Pelovirga terrestris gen. nov., sp. nov., anaerobic, alkaliphilic, fumarate-, arsenate-, Fe(III)- and sulfur-reducing bacterium isolated from a terrestrial mud volcano // Syst. Appl. Microbiol. 2022. V. 45. Art. 126304.
  13. Knittel K., Boetius A. Anaerobic oxidation of methane: progress with an unknown process // Annu. Rev. Microbiol. 2009. V. 63. P. 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130
  14. Kuever J., Rainey F.A., Widdel F. Class IV. Deltaproteobacteria class nov. // Bergey’s Manual of Systematic Bacteriology / Eds. Brenner D.J., Krieg N.R., Staley J.T. Boston, MA: Springer, 2005. P. 970–971.
  15. Kuever J., Rainey F.A., Widdel F. Desulfobacterales ord. nov. // Bergey’s Manual of Systematics of Archaea and Bacteria / Eds. Trujillo M.E., Dedysh S., DeVos P., Hedlund B., Kämpfer P., Rainey F.A. and Whitman W.B. 2015. https://doi.org/10.1002/9781118960608.obm00084
  16. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets // Mol. Biol. Evol. 2016. V. 33. P. 1870–1874.
  17. Lumppio H.L., Shenvi N.V., Summers A.O., Voordouw G., Kurtz D.M., Jr. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system // J. Bacteriol. 2001. V. 183. P. 101‒108. Erratum in: J. Bacteriol. 2001 May; 183 (9): PMID: 11114906; PMCID: PMC94855.https://doi.org/10.1128/JB.183.1.101-108.2001
  18. Mazzini A., Etiope G. Mud volcanism: an updated review // Earth-Science Rev. 2017. V. 168. P. 81–112.
  19. Meier-Kolthoff J.P., Auch A.F., Klenk H.P., Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions // BMC Bioinform. 2013. V. 14. Art. 60.
  20. Merkel A.Y., Chernyh N.A., Pimenov N.V., Bonch-Osmolovskaya E.A., Slobodkin A.I. Metabolic potential of the terrestrial mud volcano microbial community with a high abundance of archaea mediating the anaerobic oxidation of methane // Life. 2021. V. 11. Art. 953.
  21. Overbeek R., Olson R., Push G.D., Olsen G.J., Davis J.J., Disz T., Edwards R.A., Gerdes S., Parrello B., Shukla M., Vonstein V., Wattam A.R., Xia F., Stevens R. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) // Nucleic Acids Res. 2014. V. 42. I. D1. P. D206–D214.
  22. Parte A.C., Sardà Carbasse J., Meier-Kolthoff J.P., Reimer L.C., Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 5607‒5612. https://doi.org/10.1099/ijsem.0.004332
  23. Pereira I.A.C., Ramos A.R., Grein F., Marques M.C., da Silva S.M., Venceslau S.S. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea // Front. Microbiol. 2011. V. 2. P. 69. https://doi.org/10.3389/fmicb.2011.00069
  24. Pérez-Bernal M.F., Brito E.M.S., Bartoli M., Aubé J., Ollivier B., Guyoneaud R., Hirschler-Réa A. Desulfobotulus mexicanus sp. nov., a novel sulfate-reducing bacterium isolated from the sediment of an alkaline crater lake in Mexico // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 3219‒3225. https://doi.org/10.1099/ijsem.0.004159
  25. Ren G., Ma A., Zhang Y., Deng Y., Zheng G., Zhuang X., Zhuang G., Fortin D. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes // Environ. Microbiol. 2018. V. 20. P. 2370–2385.
  26. Rodriguez-R L.M., Konstantinidis K.T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes // PeerJ Preprints. 2016. 4:e1900v1.
  27. Slobodkin A.I., Reysenbach A.-L., Slobodkina G.B., Baslerov R.V., Kostrikina N.A., Wagner I.D., Bonch-Osmolovskaya E.A. Thermosulfurimonas dismutans gen. nov., sp. nov., a novel extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent // Int. J. Syst. Evol. Microbiol. 2012. V. 62. P. 2565‒2571.
  28. Slobodkina G.B., Merkel A.Y., Novikov A.A., Bonch-Osmolovskaya E.A., Slobodkin A.I. Pelomicrobium methylotrophicum gen. nov., sp. nov., a moderately thermophilic, facultatively anaerobic, lithoautotrophic and methylotrophic bacterium isolated from a terrestrial mud volcano // Extremophiles. 2020. V. 24. P. 177‒185. https://doi.org/10.1007/s00792-019-01145-0
  29. Sorokin D.Y., Detkova E.N., Muyzer G. Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. // Extremophiles. 2010. V. 14. P. 71‒77.
  30. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools // Nucleic Acids Res. 1997. V. 25. P. 4876‒4882.
  31. Trüper H.G., Schlegel H.G. Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii // Antonie van Leeuwenhoek. 1964. V. 30. P. 225–238. https://doi.org/10.1007/BF02046728
  32. Tu T.-H., Wu L.-W., Lin Y.-S., Imachi H., Lin L.-H., Wang P.-L. Microbial community composition and functional capacity in a terrestrial ferruginous, sulfate-depleted mud volcano // Front. Microbiol. 2017. V. 8. Art. 2137.
  33. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study // J. Bacteriol. 1991. V. 173. P. 697–703.
  34. Wolin E.A., Wolin M.J., Wolfe R.S. Formation of methane // J. Franklin Inst. 1963. V. 176. P. 737.
  35. Yoon S.H., Ha S.-M., Lim J., Kwon S., Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity // Antonie van Leeuwenhoek. 2017. V. 110. P. 1281–1286.
  36. Zhang L., Qiu Y.Y., Zhou Y., Chen G.H., van Loos-drecht M.C.M., Jiang F. Elemental sulfur as electron donor and/or acceptor: mechanisms, applications and perspectives for biological water and wastewater treatment // Water Research. 2021. V. 202. Art. 117373. https://doi.org/10.1016/j.watres.2021.117373

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (278KB)

Copyright (c) 2023 А.А. Фролова, А.Ю. Меркель, А.А. Кучиерская, А.И. Слободкин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies