Paludisphaera mucosa sp. nov., a Novel Planctomycete of the Family Isosphaeraceae from a Boreal Fen

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—Planctomycetes are common inhabitants of northern wetland ecosystems. In this study, a new planctomycete of the genus Paludisphaera, strain Pla2T, was isolated from a boreal fen in Russia. The novel isolate was represented by nonmotile, pink-pigmented, spherical cells that multiplied by budding and occurred singly or were assembled in small aggregates. Strain Pla2T was a chemoorganotrophic, psychrotolerant mesophile with a growth optimum at pH 5.5‒6 and 15‒20°C. The preferred growth substrates were polysaccharides, including xylan, xanthan gum, and phytagel, as well as some sugars. The 16S rRNA gene sequence of strain Pla2T displayed the highest similarity (97.9%) to that of ‘Paludisphaera soli’ JC670T isolated from highland soil of the western Himalayas. With other members of the genus Paludisphaera, “P. rhizosphaerae” JC665T and P. borealis PX4T, this similarity was 97.0 and 93.8%, respectively. The genome of strain Pla2T was 8.21 Mb in size and contained about 6500 protein-coding genes and 3 copies of the rRNA operon. The DNA G + C content was 67 mol %. The average nucleotide identity between the genome sequence of strain Pla2T and those of previously described members of the genus Paludisphaera was between 79.4 and 82.6%. This genotypic distance as well as several phenotypic differences allowed classifying the new planctomycete from a fen as representing a novel species of the genus Paludisphaera, Paludisphaera mucosa sp. nov. with the type strain Pla2T (=KCTC92668T = VKM B-3698T).

About the authors

A. A. Ivanova

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Author for correspondence.
Email: ivanovastasja@gmail.com
Russia, 119071, Moscow

D. G. Naumoff

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Email: ivanovastasja@gmail.com
Russia, 119071, Moscow

I. S. Kulichevskaya

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Email: ivanovastasja@gmail.com
Russia, 119071, Moscow

A. A. Meshcheriakova

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences; Moscow State University, Faculty of Soil Science

Email: ivanovastasja@gmail.com
Russia, 119071, Moscow; Russia, 119991, Moscow

S. N. Dedysh

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences

Email: ivanovastasja@gmail.com
Russia, 119071, Moscow

References

  1. Наумов Д.Г. Филогенетический анализ α-галактозидаз семейства GH27 // Мол. биология. 2004. Т. 38. С. 463–476.
  2. Naumoff D.G. Phylogenetic analysis of α-galactosidases of the GH27 family // Mol. Biol. (Moscow). 2004. V. 38. P. 388–399. https://doi.org/10.1023/B:MBIL.0000032210.97006.de
  3. Наумов Д.Г. Иерархическая классификация гликозил-гидролаз // Биохимия. 2011. Т. 76. С. 764–780.
  4. Naumoff D.G. Hierarchical classification of glycoside hydrolases // Biochemistry (Moscow). 2011. V. 76. P. 622–635. https://doi.org/10.1134/S0006297911060022
  5. Наумов Д.Г. Семейство GH10 гликозилгидролаз: структура и эволюционные связи // Мол. биология. 2016. Т. 50. С. 151–160.
  6. Naumoff D.G. GH10 family of glycoside hydrolases: structure and evolutionary connections // Mol. Biol. (Moscow). 2016. V. 50. P. 132–140. https://doi.org/10.1134/S0026893315060205
  7. Наумов Д.Г., Куличевская И.С., Дедыш С.Н. Генетические детерминанты утилизации ксилана у планктомицета класса Phycisphaerae, Humisphaera borealis M1803T // Микробиология. 2022. Т. 91. С. 300–311.
  8. Naumoff D.G., Kulichevskaya I.S., Dedysh S.N. Genetic determinants of xylane utilization in Humisphaera borealis M1803T, a planctomycete of the class Phycisphaerae // Microbiology (Moscow). 2022. V. 91. P. 249–258. https://doi.org/10.1134/S002626172230004X
  9. Bondoso J., Albuquerque L., Nobre M.F., Lobo-da-Cunha A., da Costa M.S., Lage O.M. Aquisphaera giovannonii gen. nov., sp. nov., a planctomycete isolated from a freshwater aquarium // Int. J. Syst. Evol. Microbiol. 2011. V. 61. P. 2844–2850. https://doi.org/10.1099/ijs.0.027474-0
  10. Chaumeil P.-A., Mussig A.J., Hugenholtz P., Parks D.H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database // Bioinformatics. 2020. V. 36. P. 1925–1927. https://doi.org/10.1093/bioinformatics/btz848
  11. Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., da Costa M.S. et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 461–466. https://doi.org/10.1099/ijsem.0.002516
  12. Dedysh S.N., Beletsky A.V., Ivanova A.A., Kulichevskaya I.S., Suzina N.E., Philippov D.A. et al. Wide distribution of Phycisphaera-like planctomycetes from WD2101 soil group in peatlands and genome analysis of the first cultivated representative // Environ. Microbiol. 2020. V. 23. P. 1510–1526. https://doi.org/10.1111/1462-2920.15360
  13. Dedysh S.N., Ivanova A.A. Planctomycetes in boreal and subarctic wetlands: diversity patterns and potential ecological functions // FEMS Microbiol. Ecol. 2019. V. 95. Art. fiy227. https://doi.org/10.1093/femsec/fiy227
  14. Donadio S., Monciardini P., Sosio M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics // Nat. Prod. Rep. 2007. V. 24. P. 1073–1109. https://doi.org/10.1039/b514050c
  15. Drula E., Garron M.-L., Dogan S., Lombard V., Henrissat B., Terrapon N. The carbohydrate-active enzyme database: functions and literature // Nucl. Acids Res. 2022. № Database issue (50). P. D571–D577. https://doi.org/10.1093/nar/gkab1045
  16. Ferrer L., Mindt M., Suarez-Diez M., Jilg T., Zagorščak M., Lee J.H. et al. Fermentative indole production via bacterial tryptophan synthase alpha subunit and plant indole-3-glycerol phosphate lyase enzymes // J. Agric. Food Chem. 2022. V. 70. P. 5634–5645. https://doi.org/10.1021/acs.jafc.2c01042
  17. Giovannoni S.J., Schabtach E., Castenholz R.W. Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs // Arch. Microbiol. 1987. V. 147. P. 276–284. https://doi.org/10.1007/BF00463488
  18. Göker M., Cleland D., Saunders E., Lapidus A., Nolan M., Lucas S. et al. Complete genome sequence of Isosphaera pallida type strain (IS1B) // Stand. Genom. Sci. 2011. V. 4. P. 63–71. https://doi.org/10.4056/sigs.1533840
  19. Helfrich E.J.N., Lin G.M., Voigt C.A., Clardy J. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering // Beilstein J. Org. Chem. 2019. V. 15. P. 2889–2906. https://doi.org/10.3762/bjoc.15.283
  20. Ivanova A.A., Naumoff D.G., Miroshnikov K.K., Liesack W., Dedysh S.N. Comparative genomics of four Isosphaeraceae planctomycetes: a common pool of plasmids and glycoside hydrolase genes shared by Paludisphaera borealis PX4T, Isosphaera pallida IS1BT, Singulisphaera acidiphila DSM 18658T, and strain SH-PL62 // Front. Microbiol. 2017. V. 8. P. 412. https://doi.org/10.3389/fmicb.2017.00412
  21. Kanehisa M., Sato Y., Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences // J. Mol. Biol. 2016. V. 428. P. 726–731. https://doi.org/10.1016/j.jmb.2015.11.006
  22. Kaushik R., Sharma M., Gaurav K., Jagadeeshwari U., Shabbir A., Sasikala C. et al. Paludisphaera soli sp. nov., a new member of the family Isosphaeraceae isolated from high altitude soil in the Western Himalaya // Antonie van Leeuwenhoek. 2020. V. 113. P. 1663–1674. https://doi.org/10.1007/s10482-020-01471-w
  23. Kovaleva O.L., Elcheninov A.G., Toshchakov S.V., Novikov A.A., Bonch-Osmolovskaya E.A., Kublanov I.V. Tautonia sociabilis gen. nov., sp. nov., a novel thermotolerant planctomycete, isolated from a 4000 m deep subterranean habitat // Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 2299–2304. https://doi.org/10.1099/ijsem.0.003467
  24. Kulichevskaya I.S., Ivanova A.A., Detkova E.N., Rijpstra W.I.C., Sinninghe Damsté J.S., Dedysh S.N. Tundrisphaera lichenicola gen. nov., sp. nov., a psychrotolerant representative of the family Isosphaeraceae from lichen-dominated tundra soils // Int. J. Syst. Evol. Microbiol. 2017. V. 67. P. 3583–3589. https://doi.org/10.1099/ijsem.0.002172
  25. Kulichevskaya I.S., Ivanova A.A., Suzina N.E., Rijpstra W.I.C., Damsté J.S.S., Dedysh S.N. Paludisphaera borealis gen. nov., sp. nov., a hydrolytic planctomycete from northern wetlands, and the proposal of Isosphaeraceae fam. nov. // Int. J. Syst. Evol. Microbiol. 2016. V. 66. P. 837–844. https://doi.org/10.1099/ijsem.0.000799
  26. Kulichevskaya I.S., Ivanova A.O., Baulina O.I., Bodelier P.L.E., Damsté J.S.S., Dedysh S.N. Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northen wetlands // Int. J. Syst. Evol. Microbiol. 2008. V. 58. P. 1186–1193. https://doi.org/10.1099/ijs.0.65593-0
  27. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X : molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
  28. Lane D.J. 16S/23S rRNA sequencing // Nucleic Acid Techniques in Bacterial Systematic / Eds. Stackebrandt E., Goodfellow M., New York: John Wiley & Sons, 1991. P. 115–175.
  29. Lhingjakim K.L., Smita N., Kumar G., Jagadeeshwari U., Ahamad S., Sasikala C. et al. Paludisphaera rhizosphaereae sp. nov., a new member of the family Isosphaeraceae, isolated from the rhizosphere soil of Erianthus ravennae // Antonie van Leeuwenhoek. 2022. V. 115. P. 1073–1084. https://doi.org/10.1007/s10482-022-01758-0
  30. Medema M.H., Blin K., Cimermancic P., De Jager V., Zakrzewski P., Fischbach M.A. et al. AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences // Nucl. Acids Res. 2011. V. 39 (Web Server issue) P. W339–W346. https://doi.org/10.1093/nar/gkr466
  31. Moore E.K., Villanueva L., Hopmans E.C., Rijpstra W.I.C., Mets A., Dedysh S.N. et al. Abundant trimethylornithine lipids and specific gene sequences are indicative of planctomycete importance at the oxic/anoxic interface in Sphagnum-dominated northern wetlands // Appl. Environ. Microbiol. 2015. V. 81. P. 6333–6344. https://doi.org/10.1128/AEM.00324-15
  32. Naumoff D.G. β-Fructosidase superfamily: homology with some α-L-arabinases and β-D-xylosidases // Proteins. 2001. V. 42. P. 66–67. https://doi.org/10.1002/1097-0134(20010101)42:1<66::AID- PROT70>3.0.CO;2-4
  33. Seemann T. Prokka: rapid prokaryotic genome annotation // Bioinformatics. 2014. V. 30. P. 2068–2069. https://doi.org/10.1093/bioinformatics/btu153
  34. Serkebaeva Y.M., Kim Y., Liesack W., Dedysh S.N. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions // PloS One. 2013. V. 8. P. e63994. https://doi.org/10.1371/journal.pone.0063994
  35. Staley J.T., Fuerst J.A., Giovannoni S., Schlesner H. The order Planctomycetales and the genera Planctomyces, Pirellula, Gemmata, and Isosphaera // The Prokaryotes / Eds. Balows A. et al. New York, NY: Springer New York, 1992. P. 3710–3731.
  36. Wick R.R., Judd L.M., Gorrie C.L., Holt K.E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads // PLoS Comput. Biol. 2017. V. 13. P. e1005595. https://doi.org/10.1371/journal.pcbi.1005595
  37. Wiegand S., Jogler M., Jogler C. On the maverick Planctomycetes // FEMS Microbiol. Rev. 2018. V. 42. P. 739–760. https://doi.org/10.1002/adsc.201

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (274KB)
4.

Download (97KB)

Copyright (c) 2023 А.А. Иванова, Д.Г. Наумов, И.С. Куличевская, А.А. Мещерякова, С.Н. Дедыш

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies