Biocidal Activity of Chitosan Asparaginate Nanoparticles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—The biological activity of chitosan asparaginate particles formed in the chitosan‒L-aspartic acid‒water system at the initial stage of phase separation was investigated. Cultivation of Staphylococcus aureus 209 P and Escherichia coli 113-13 in the medium supplemented with nanoparticles resulted in massive death of bacterial cultures. The biocidal activity against gram-positive bacteria was most pronounced. Biological tests revealed high biocompatibility of chitosan nanoparticles and their ability to accelerate the proliferative activity of the cultures of epidermal and epithelial cells. Our results indicate that chitosan asparaginate nanoparticles are promising for medico-biological and pharmaceutical applications.

About the authors

A. B. Shipovskaya

Saratov State University

Email: tlugovitskaja@mail.ru
Russia, 410012, Saratov

T. N. Lugovitskaya

Saratov State University

Author for correspondence.
Email: tlugovitskaja@mail.ru
Russia, 410012, Saratov

I. V. Zudina

Saratov State University

Email: tlugovitskaja@mail.ru
Russia, 410012, Saratov

References

  1. Гегель Н.О., Зудина И.В., Малинкина О.Н., Шиповская А.Б. Влияние изомерной формы аскорбиновой кислоты на антибактериальную активность ее солей с хитозаном // Микробиология. 2018. Т. 87. С. 618–623.
  2. Gegel N.O., Zudina I.V., Malinkina O.N., Shipovskaya A.B. Effect of ascorbic acid isomeric forms on antibacterial activity of its chitosan salts // Microbiology (Moscow). 2018. V. 87. P. 732–737.
  3. Ильина А.В., Варламов В.П., Ермаков Ю.А. Хитозан – полимер для формирования наночастиц // ДАH. 2008. Т. 421. № 2. С. 199–201.
  4. Il’ina A.V., Varlamov V.P., Skryabin K.G., Ermakov Yu.A., Orlov V.N. Chitosan is a natural polymer for constructing nanoparticles // Doklady Chem. 2008. V. 421. P. 165–167.
  5. Куликов С.Н., Шакирова Д.Р., Тихонов В.Е., Безродных Е.А., Ильина А.В., Левов А.Н., Варламов В.П. Антимикотическая активность хитозана и его производных в отношении Candida albicans // Проблемы медицинской микологии. 2012. Т. 14. № 4. С. 50–54.
  6. Луговицкая Т.Н., Шиповская А.Б. Физико-химические свойства водных растворов L-аспарагиновой кислоты с добавкой хитозана // Журн. общей химии. 2017. Т. 87. С. 650–656.
  7. Lugovitskaya T.N., Shipovskaya A.B. Physicochemical properties of aqueous solutions of L-aspartic acid containing chitosan // Russ. J. Gen. Chem. 2017. V. 87. P. 782–787.
  8. Луговицкая Т.Н., Зудина И.В., Шиповская А.Б. Получение и свойства аспарагиновокислых растворов хитозана // Журн. прикл. химии. 2020. Т. 93. С. 90–99.
  9. Lugovitskaya T.N., Zudina I.V., Shipovskaya A.B. Obtaining and properties of L-aspartic acid solutions of chitosan // Russ. J. Appl. Chem. 2020. V. 93. P. 80–88.
  10. Набережных Г.А., Горбач В.И., Лихацкая Г.Н., Давыдова В.Н., Соловьева Т.Ф. Взаимодействие хитозанов и N-ацилированных производных хитозанов с липополисахаридами грамотрицательных бактерий // Биохимия. 2008. Т. 73. С. 530–541.
  11. Naberezhnykh G.A., Gorbach V.I., Likhatskaya G.N., Davidova V.N., Solov’eva T.F. Interaction of chitosans and their N-acylated derivatives with lipopolysaccharide of gram-negative bacteria // Biochemistry (Moscow). 2008. V. 73. P. 432–441.
  12. Полюдова Т.В., Шагдарова Б.Ц., Коробовa В.П., Варламов В.П. Бактериальная адгезия и образование биопленок в присутствии хитозана и его производных // Микробиология. 2019. Т. 88. С. 129–136.
  13. Polyudova T.V., Korobov V.P., Shagdarova B.T., Varlamov V.P. Bacterial adhesion and biofilm formation in the presence of chitosan and its derivatives // Microbiology (Moscow). 2019. V. 88. P. 125–131.
  14. Салтыкова Е.С., Гайфуллина Л.Р., Каскинова М.Д., Гатауллин А.Р., Матниязов Р.Т., Поскряков А.В., Николенко А.Г. Действие хитозана на развитие микроспоридий Nosema apis в медоносных пчелах // Микробиология. 2018. Т. 87. С. 624–630.
  15. Saltykova E.S., Gaifullina L.R., Kaskinova M.D., Gataullin A.R., Matniyazov R.T., Poskryakov A.V., Nikolenko A.G. Effect of chitosan on development of Nosema apis microsporidia in honey bees // Microbiology (Moscow). 2018. V. 87. P. 738–743.
  16. Шиповская А.Б., Малинкина О.Н., Гегель Н.О., Зудина И.В., Луговицкая Т.Н. Структура и свойства солевых комплексов хитозана с диастереомерами аскорбиновой кислоты // Изв. АН. Сер. химич. 2021. № 9. С. 1765–1774.
  17. Shipovskaya A.B., Malinkina O.N., Gegel N.O., Zudina I.V., Lugovitskaya T.N. Structure and properties of chitosan salt complexes with ascorbic acid diastereomers // Russ. Chem. Bull. 2021. V. 70. P. 1765–1774.
  18. Ayon N.J. Features, roles and chiral analyses of proteinogenic amino acids // AIMS Mol. Sci. 2020. V. 7. P. 229–268.
  19. Babicheva T.S., Gegel N.O., Shipovskaya A.B. Visualization of morphological features of chitosan microtubes during biodegradation // J. Phys.: Conf. Ser. – IOP Publishing, 2017. Iss. 4. P. 042026.
  20. Chandrasekaran M., Kim K.D., Chun S.C. Antibacterial activity of chitosan nanoparticles: a review // Processes. 2020. V. 8. P. 1173.
  21. Divya K., Jisha M.S. Chitosan nanoparticles preparation and applications // Environ. Chem. Lett. 2018. V. 16. P. 101–112.
  22. Gegel N.O., Zhuravleva Yu.Yu., Shipovskaya A.B., Malinkina O.N., Zudina I.V. Influence of chitosan ascorbate chirality on the gelation kinetics and properties of silicon-chitosan-containing glycerohydrogels // Polymers. 2018. V. 10. P. 259.
  23. Howling G.I., Dettmar P.W., Goddard P.A., Hampson F.C., Dornish M., Wood E.J. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro // Biomaterials. 2001. V. 22. P. 2959–2966.
  24. Jhaveri J., Raichura Z., Khan T., Momin M., Omri A. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics // Molecules. 2021. V. 26. P. 272.
  25. Kong M., Chen X.G., Xing K., Park H.J. Antimicrobial properties of chitosan and mode of action: a state of the art review // Int. J. Food Microbiol. 2010. V. 144. P. 51–63.
  26. Kravanja G., Primožič M., Knez Ž., Leitgeb M. Chitosan-based (nano) materials for novel biomedical applications // Molecules. 2019. V. 24. P. 1960.
  27. Lau H.K., Kiick K.L. Opportunities for multicomponent hybrid hydrogels in biomedical applications // Biomacromolecules. 2015. V. 16. P. 28–42.
  28. Luangtana-Anan M., Nunthanid J., Limmatvapirat S. Potential of different salt forming agents on the formation of chitosan nanoparticles as carriers for protein drug delivery systems // J. Pharm. Investigation. 2017. V. 49. P. 37–44.
  29. Lugovitskaya T.N., Shipovskaya A.B., Shmakov S.L., Shipenok X.M. Formation, structure, properties of chitosan aspartate and metastable state of its solutions for obtaining nanoparticles // Carbohydr. Polym. 2022. V. 277. P. 118773.
  30. Marciello M., Rossi S., Caramella C., Remunan-Lopez C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery // Carbohydr. Polym. 2017. V. 170. P. 43–51.
  31. Másson M., Holappa J., Hjálmarsdóttir M., Rúnarsson Ö.V., Nevalainen T., Järvinen T. Antimicrobial activity of piperazine derivatives of chitosan // Carbohydr. Polym. 2008. V. 74. P. 566–571.
  32. Mohammed M.A., Syeda J., Wasan K.M., Wasan E.K. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery // Pharmaceutics. 2017. V. 9. Is. 4. P. 53.
  33. Mubarak Ali D., Lewis Oscar F., Gopinath V., Alharbi N.S., Alharbi S.A., Thajuddin N. An inhibitory action of chitosan nanoparticles against pathogenic bacteria and fungi and their potential applications as biocompatible antioxidants // Microb. Pathog. 2018. V. 114. P. 323–327.
  34. Muzzarelli R.A.A. Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Review article // Carbohydr. Polym. 2011. V. 83. P. 1433–1445.
  35. No H.K., Park N.Y., Lee S.H., Meyers S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights // Int. J. Food Microbiol. 2002. V. 74. P. 65–72.
  36. Raafat D., Von Bargen K., Haas A., Sahl H.G. Insight into the mode of action of chitosan as an antibacterial compound // Appl. Environ. Microbiol. 2008. V. 74. P. 3764–3773.
  37. Rhoades J., Roller S. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods // Appl. Environ. Microbiol. 2000. V. 66. P. 80–86.
  38. Rinaudo M. Chitin and chitosan: properties and applications // Prog. Polym. Sci. 2006. V. 31. P. 603–632.
  39. Rossi S., Vigani B., Puccio A., Bonferoni M.C., Sandri G., Ferrari F. Chitosan ascorbate nanoparticles for the vaginal delivery of antibiotic drugs in atrophic vaginitis // Marine Drugs. 2017. V. 15. P. 319.
  40. Rozman N.A.S., Tong W.Y., Leong C.R., Tan W.N., Hasanolbasori M.A., Abdullah S.Z. Potential antimicrobial applications of chitosan nanoparticles (ChNP) // J. Microbiol. Biotechnol. 2019. V. 29. P. 1009–1013.
  41. Stie M.B., Gätke J.R., Wan F., Chronakis I.S., Jacobsen J., Nielsen H.M. Swelling of mucoadhesive electrospun chitosan/polyethylene oxide nanofibers facilitates adhesion to the sublingual mucosa // Carbohydr. Polym. 2020. V. 242. P. 116428.
  42. Supraja N., Thiruchenduran S., Prasad T. Synthesis and characterization of chitosan nanoparticles and evaluation of antimicrobial activity antioxidant activity // Advancement Bioequiv. Bioavailab. 2018. V. 2. P. 88–93.
  43. Yu J., Wang D., Geetha N., Khawar K.M., Jogaiah S., Mujtaba M. Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: a review // Carbohydr. Polym. 2021. V. 261. P. 117904.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)
3.

Download (5MB)
4.

Download (4MB)

Copyright (c) 2023 А.Б. Шиповская, Т.Н. Луговицкая, И.В. Зудина

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».