Sulfurospirillum tamanensis sp. nov., a Facultative Anaerobic Alkaliphilic Bacterium from a Terrestrial Mud Volcano

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—An alkaliphilic, facultatively anaerobic bacterium (strain T05bT) was isolated from a terrestrial mud volcano on the Taman Peninsula, Russia. The cells of the isolate were motile spirilla 0.5 µm thick and 1.5–2.5 µm long. Strain T05bT grew at 6–42°C (optimum at 30°C), pH 8.0–11.0 (optimum at 9.0), and 0–14% NaCl (wt/vol). Lactate, formate, malate, pyruvate, H2, elemental sulfur, sulfite, thiosulfate, and sulfide were used as electron donors; nitrate, fumarate, elemental sulfur, sulfite, thiosulfate, dimethyl sulfoxide, arsenate, and oxygen could be used as electron acceptors. Nitrate was reduced to ammonium. Malate, pyruvate, and fumarate were fermented. Microaerobic growth was possible at up to 3% О2 (vol/vol). Strain T05bT did not use sulfate and Fe(III) as electron acceptors, was unable of elemental sulfur, sulfite, or thiosulfate disproportionation, and did not ferment glucose, fructose, sucrose, lactate, formate, maleate, yeast extract, or peptone. The predominant fatty acids were C16:1 ω7 (45.9%), C16:0 (25.8%), and C18:1 ω7 (20.9%). The genome of strain T05bT was 2.46 Mb in size and had the G + C DNA content of 45.5%. It contained the genes encoding the following enzymes of energy metabolism: Nap nitrate reductase periplasmic complex, Phs/Psr thiosulfate/polysulfide reductase, Sqr sulfide:quinone oxidoreductase, and Arr respiratory arsenate reductase. Ac-cording to analysis of the 16S rRNA gene nucleotide sequence, strain T05bT exhibited 98.61% similarity to the type strain of Sulfurospirillum alkalitolerans (phylum “Campylobacterota”). Based on its phenotypic characteristics and the results of phylogenetic analysis, assignment of the isolate to a new Sulfurospirillum species, Sulfurospirillum tamanensis sp. nov., is proposed, with the type strain T05bT (=DSM 112596T = VKM B-3538T).

About the authors

A. A. Frolova

Winogradsky Institute of Microbiology, Research Center of Biotechnology,
Russian Academy of Sciences

Author for correspondence.
Email: romana2804@gmail.com
Russia, 199071, Moscow

A. Yu. Merkel

Winogradsky Institute of Microbiology, Research Center of Biotechnology,
Russian Academy of Sciences

Email: romana2804@gmail.com
Russia, 199071, Moscow

V. V. Kevbrin

Winogradsky Institute of Microbiology, Research Center of Biotechnology,
Russian Academy of Sciences

Email: romana2804@gmail.com
Russia, 199071, Moscow

D. S. Kopitsyn

Gubkin National University of Oil and Gas

Email: romana2804@gmail.com
Russia, 119991, Moscow

A. I. Slobodkin

Winogradsky Institute of Microbiology, Research Center of Biotechnology,
Russian Academy of Sciences

Email: romana2804@gmail.com
Russia, 199071, Moscow

References

  1. Гнатенко Г.И., Кутний В.А., Науменко П.И., Соболевский Ю.В., Шнюков Е.Ф. Грязевые вулканы Керченско-Таманской области (атлас) // Киев: Наукова Думка, 1986. С. 149.
  2. Холодов В.Н. Грязевые вулканы: распространение и генезис // Геология и полезные ископаемые Мирового океана. 2012. Т. 4. С. 5–27.
  3. Alain K., Holler T., Musat F., Elvert M., Treude T., Krüger M. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania // Environ. Microbiol. 2006. V. 8. P. 574–590.
  4. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool // J. Mol. Biol. 1990. V. 215. P. 403‒410.
  5. Benson D.A., Boguski M.S., Lipman D.J., Ostell J., Ouellette B.F.F., Rapp B.A., Wheeler D.L. GenBank // Nucleic Acids Res. 1999. V. 27. P. 12–17.
  6. Bonch-Osmolovskaya E.A., Sokolova T.G., Kostrikina N.A., Zavarzin G.A. Desulfurella acetivorans gen. nov. and sp. nov. ‒ a new thermophilic sulfur-reducing eubacterium // Arch. Microbiol. 1990. V. 153. P. 151–155.
  7. Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., Olson R., Overbeek R., Parrello B., Pusch G.D., Shukla M., Thomason J.A., Stevens R., Vonstein V., Wattam A.R., Xia F. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes // Sci. Rep. 2015. V. 5. P. 8365.
  8. Cheng T.W., Chang Y.H., Tang S.L., Tseng C.H., Chiang P.W., Chang K.T., Sun C.H., Chen Y.G., Kuo H.C., Wang C.H., Chu P.H., Song S.R., Wang P.L., Lin L.H. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano // ISME J. 2012. V. 6. P. 2280–2290.
  9. Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., da Costa M.S., Rooney A.P., Yi H., Xu X.-W., De Meyer S., Trujillo M.E. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 461–466.
  10. Cornish Shartau S.L., Yurkiw M., Lin S., Grigoryan A.A., Lambo A., Park H.S., Lomans B.P., van der Biezen E., Jetten M.S.M., Voordouw G. Ammonium concentrations in produced waters from a mesothermic oil field subjected to nitrate injection decrease through formation of denitrifying biomass and anammox activity // Appl. Environ. Microbiol. 2010. V. 76. P. 4977–4987.
  11. Dimitrov L.I. Mud volcanoes – a significant source of atmospheric methane // Geo-Mar. Lett. 2003. V. 23. P. 155‒161.
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap // Evolution. 1985. V. 39. P. 783‒791.
  13. Finster K., Liesack W., Tindall B.J. Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium // Int. J. Syst. Evol. Microbiol. 1997. V. 47. P. 1212‒1217.
  14. GBIF Secretariat (2021). GBIF Backbone Taxonomy. Checklist dataset.https://doi.org/10.15468/39omei
  15. Ghosh W., Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea // FEMS Microbiol. Rev. 2009. V. 33. P. 999–1043.
  16. Goris T., Schubert T., Gadkari J., Wubet T., Tarkka M., Buscot F., Adrian L., Diekert G. Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies // Env. Microb. Special Issue: Sulfur Cycle Ecology. 2014. V. 16. I. 11. P. 3562‒3580.
  17. Grissa I., Vergnaud G., Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats // BMC Bioinf. 2007. V. 8. P. 172.
  18. Gross R., Pisa R., Sänger M., Lancaster C.R.D., Simon J. Characterization of the menaquinone reduction site in the diheme cytochrome b membrane anchor of Wolinella succinogenes NiFe-hydrogenase // J. Biol. Chem. 2004. V. 279. P. 274‒281.
  19. Hazkani-Covo E., Graur D. A comparative analysis of numt evolution in human and chimpanzee // Mol. Biol. Evol. 2007. V. 24. P. 13–18.
  20. Hubert C., Voordouw G. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors // Appl. Environ. Microbiol. 2007. V. 73. P. 2644–2652.
  21. Jensen A., Finster K. Isolation and characterization of Sulfurospirillum carboxydovorans sp. nov., a new microaerophilic carbon monoxide oxidizing epsilon Proteobacterium // Ant. van Leeuwenhoek. 2005. V. 87. P. 339‒353.
  22. Kather B., Stingl K., van der Rest M.E., Altendorf K., Molenaar D. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase // J. Bacteriol. 2000. V. 182. P. 3204‒3209.
  23. Khomyakova M.A., Merkel A.Y., Petrova D.A., Bonch-Osmolovskaya E.A., Slobodkin A.I. Alkalibaculum sporogenes sp. nov., isolated from a terrestrial mud volcano and emended description of the genus Alkalibaculum // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 4914–4919.
  24. Kodama Y., Ha L.T., Watanabe K. Sulfurospirillum cavolei sp. nov., a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity // Int. J. Syst. Evol. Microbiol. 2007. V. 57. P. 827‒831.
  25. Kokoschka S., Dreier A., Romoth K., Taviani M., Schäfer N., Reitner J., Hoppert M. Isolation of anaerobic bacteria from terrestrial mud volcanoes (Salse di Nirano, Northern Apennines, Italy) // Geomicrobiol. 2015. V. 32. P. 355–364.
  26. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets // Mol. Biol. Evol. 2016. V. 33. P. 1870–1874.
  27. Luijten M.L., de Weert J., Smidt H., Boschker H.T., de Vos W.M., Schraa G., Stams A.J. Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. // Int. J. Syst. Evol. Microbiol. 2003. V. 53. P. 787‒793.
  28. Malasarn D., Keeffe J.R., Newman D.K. Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3 // J. Bacteriol. 2008. V. 190. P. 135–142. https://doi.org/10.1128/JB.01110-07
  29. Merkel A.Y., Chernyh N.A., Pimenov N.V., Bonch-Osmolovskaya E.A., Slobodkin A.I. Metabolic potential of the terrestrial mud volcano microbial community with a high abundance of archaea mediating the anaerobic oxidation of methane // Life. 2021. V. 11. P. 953.
  30. Mazzini A., Etiope G. Mud volcanism: An updated review // Earth-Science Rev. 2017. V. 168. P. 81–112.
  31. Overbeek R., Olson R., Push G.D., Olsen G.J., Davis J.J., Disz T., Edwards R.A., Gerdes S., Parrello B., Shukla M., Vonstein V., Wattam A.R., Xia F., Stevens R. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) // Nuclear Acids Res. 2014. V. 42. P. D206–D214.
  32. Preiss L., Hicks D.B., Suzuki S., Meier T., Krulwich T.A. Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis // Front. Bioeng. Biotechnol. 2015. V. 3. P. 75.
  33. Ratnikova N.M., Slobodkin A.I., Merkel A.Y., Kopitsyn D.S., Kevbrin V.V., Bonch-Osmolovskaya E.A., Slobodkina G.B. Sulfurimonas crateris sp. nov., a facultative anaerobic sulfur-oxidizing chemolithoautotrophic bacterium isolated from a terrestrial mud volcano // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 487–492.
  34. Ross D.E., Marshall C.W., May H.D., Norman R.S. Comparative genomic analysis of Sulfurospirillum cavolei MES reconstructed from the metagenome of an electrosynthetic microbiome // PLoS One. 2016. V. 11. P. e0151214.
  35. Rousseau C., Gonnet M., Le Romancer M., Nicolas J. CRI-SPI: a CRISPR interactive database // Bioinf. 2009. V. 25. P. 3317–3318.
  36. Rowland H.A.L., Boothman C., Pancost R., Gault A.G., Polya D.A., Lloyd J.R. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from West Bengal Aquifer Sediments // J. Env. Qual. 2009. V. 38. P. 1598‒1607.
  37. Rzhetsky A., Nei M. A simple method for estimating and testing minimum-evolution trees // Mol. Biol. Evol. 1992. V. 9. P. 945–967.
  38. Sercu B., Jones A.D.G., Wu C.H., Escobar M.H., Serlin C.L., Knapp T.A., Andersen G.L., Holden P.A. The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents // Microb. Ecol. 2013. V. 65. P. 39–49.
  39. Schumacher W., Kroneck P.M.H., Pfennig N. Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. // Arch. Microbiol. 1992. V. 158. P. 287‒293.
  40. Slobodkin A.I., Reysenbach A.-L., Slobodkina G.B., Baslerov R.V., Kostrikina N.A., Wagner I.D., Bonch-Osmolovskaya E.A. Thermosulfurimonas dismutans gen. nov., sp. nov. a novel extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent // Int. J. Syst. Evol. Microbiol. 2012. V. 62. P. 2565‒2571.
  41. Slobodkina G.B., Merkel A.Y., Novikov A.A., Bonch-Osmolovskaya E.A., Slobodkin A.I. Pelomicrobium methylotrophicum gen. nov., sp. nov. a moderately thermophilic, facultatively anaerobic, lithoautotrophic and methylotrophic bacterium isolated from a terrestrial mud volcano // Extremophiles. 2020. V. 24. P. 177–185.
  42. Søndergaard D., Pedersen C.N.S., Greening C. HydDB: A web tool for hydrogenase classification and analysis // Sci. Rep. 2016. V. 6. P. 34212. https://doi.org/10.1038/srep34212
  43. Sorokin D.Y., Berben T., Melton E.D., Overmars L., Vavorakis C.D., Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes // Extremophiles. 2014. V. 18. P. 791‒809.
  44. Sorokin D.Y., Tourova T.P., Muyzer G. Isolation and characterization of two novel alkalitolerant sulfidogens from a Thiopaq bioreactor, Desulfonatronum alkalitolerans sp. nov., and Sulfurospirillum alkalitolerans sp. nov. // Extremophiles. 2013. V. 17. P. 535–543.
  45. Stolz J.F., Ellis D.J., Blum J.S., Ahmann D., Lovley D.R., Oremland R.S. Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ε-Proteobacteria // Int. J. Syst. Bacteriol. 1999. V. 49. P. 1177‒1180.
  46. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools // Nucleic Acids Res. 1997. V. 25. P. 4876‒4882.
  47. van der Stel A.-X., Wösten M.M.S.M. Regulation of respiratory pathways in Campylobacterota: a review // Front. Microbiol. 2009. V. 10. P. 1719. https://doi.org/10.3389/fmicb.2019.01719
  48. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study // J. Bacteriol. 1991. V. 173. P. 697–703.
  49. Wolin E.A., Wolin M.J., Wolfe R.S. Formation of methane // J. Franklin Inst. 1963. V. 176. P. 737.
  50. Yang H.M., Lou K., Sun J., Zhang T., Ma X.L. Prokaryotic diversity of an active mud volcano in the Usu City of Xinjiang, China // J. Basic Microbiol. 2012. V. 52. P. 79–85.
  51. Yun J.H., Sung H., Kim H.S., Tak E.J., Kang W., Lee J.-Y., Hyun D.-W., Kim P.S., Bae J.-W. Complete genome sequence of the halophile bacterium Kushneria konosiri X49T, isolated from salt-fermented Konosirus punctatus // Stand. Genomic Sci. 2018. 13:19. https://doi.org/10.1186/s40793-018-0324-0
  52. Zhang L., Qiu Y.Y., Zhou Y., Chen G.H., van Loosdrecht M.C.M., Jiang F. Elemental sulfur as electron donor and/or acceptor: Mechanisms, applications and perspectives for biological water and wastewater treatment // Water Res. 2021. V. 202. P. 117373.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (139KB)

Copyright (c) 2023 А.А. Фролова, А.Ю. Меркель, В.В. Кевбрин, Д.С. Копицын, А.И. Слободкин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies