Transformation of Methoxylated Aromatic Compounds by Anaerobic Microorganisms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—Methoxylated aromatic compounds (MAC) are widely distributed in various habitats and are components of lignin, the second most abundant biopolymer on Earth. This review summarizes the results on microbiology, ecology, and biochemistry of anaerobic MAC catabolism in bacteria and archaea. We analyzed the genomes of 46 prokaryotes anaerobically degrading MAC for the presence of O-demethylase, CO-dehydrogenase/acetyl-CoA synthase, and benzoyl-CoA reductase genes, which determine the possibility of methoxydotrophic growth. It was found that facultative anaerobes of the phylum Pseudomonadota do not have any known genetic determinants of anaerobic O-demethylase reaction as well as of aromatic ring reduction. Thus, the MAC transformation by anaerobic microorganisms can be carried out by diverse biochemical mechanisms and probably plays a more significant role in the global carbon cycle than previously supposed.

About the authors

M. A. Khomyakova

Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences

Author for correspondence.
Email: mary_klimova@mail.ru
Russia, 119071, Moscow

A. I. Slobodkin

Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences

Email: mary_klimova@mail.ru
Russia, 119071, Moscow

References

  1. Abdelaziz O.Y., Brink D.P., Prothmann J., Ravi K., Sun M., García-Hidalgo J., Sandahl M., Hulteberg C.P., Turner C., Lidén G., Gorwa-Grauslund M.F. Biological valorization of low molecular weight lignin // Biotechnol. Adv. 2016. V. 34. P. 1318–1346.
  2. Ahring B.K., Biswas R., Ahamed A., Teller P.J., Uellendahl H. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment // Bioresour. Technol. 2015 V. 175. P. 182–188.
  3. Allen T.D., Caldwell M.E., Lawson P.A., Huhnke R.L., Tanner R.S. Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil // Int. J. Syst. Evol. Microbiol. 2010 V. 60. P. 2483–2489.
  4. Ander P., Eriksson K.B. Lignin degradation and utilization by micro-organisms // Prog. Ind. Microbiol. 1978. V. 14. P. 1–58.
  5. Azzena U., Denurra T., Melloni G., Fenude E., Rassu G. Electron-transfer-induced reductive demethoxylation of anisole: evidence for cleavage of a radical anion // J. Org. Chem. 1992. V. 57. P. 1444–1448.
  6. Bache R., Pfennig N. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields // Arch. Microbiol. 1981. V. 130. P. 255–261.
  7. Bak F., Finster K., Rothfuss F. Formation of dimethyl sulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria // Arch. Microbiol. 1992. V. 159. P. 529–534.
  8. Berman M.H., Frazer A.C. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers // Appl. Environ. Microbiol. 1992. V. 58. P. 925–931.
  9. Bernhardt F.H., Ruf H.H., Staudinger H. Purification of a 4‑methoxybenzoate O-demethylase from Pseudomonas putida // Biol. Chem. 1971. V. 352. P. 1091–1099.
  10. Boll M. Dearomatizing benzene ring reductases // J. Mol. Microbiol. Biotechnol. 2005. V. 10. P. 132–142.
  11. Boll M., Fuchs G. Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172 // Eur. J. Biochem. 1995. V. 234. P. 921–933.
  12. Boll M., Fuchs G., Meier C., Trautwein A., Lowe D.J. EPR and Mössbauer studies of benzoyl-CoA reductase // J. Biol. Chem. 2000. V. 275. P. 31857–31868.
  13. Braune A., Blaut M. Catenibacillus scindens gen. nov., sp. nov., a C-deglycosylating human intestinal representative of the Lachnospiraceae // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 3356–3361.
  14. Breznak J.A., Switzer J.M., Seitz H.J. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites // Arch. Microbiol. 1988. V. 150. P. 282–288.
  15. Brink D.P., Ravi K., Lidén G., Gorwa-Grauslund M.F. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 3979–4002.
  16. Brunow G., Lundquist K. Functional groups and bonding patterns in lignin (including the lignin-carbohydrate com-plexes) // Lignin and Lignans / Eds. Heitner C., Dimmel D., Schmidt J. CRC Press, 2010. P. 267–299.
  17. Chen J.X., Deng C.Y., Zhang Y.T., Liu Z.M., Wang P.Z., Liu S.L., Qian W., Yang D.H. Cloning, expression, and characterization of a four-component O-demethylase from human intestinal bacterium Eubacterium limosum ZL-II // Appl. Microbiol. Biotechnol. 2016. V. 100. P. 9111–9124.
  18. Cheng L., Qiu T.L., Yin X.B., Wu X.L., Hu G.Q., Deng Y., Zhang H. Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. // Int. J. Syst. Evol. Microbiol. 2007. V. 57. P. 2964‒2969.
  19. Christiansen N., Ahring B.K. Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium // Int. J. Syst. Evol. Microbiol. 1996. V. 46. P. 442‒448.
  20. Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved // Environ. Microbiol. Rep. 2009. V. 1. P. 285–292.
  21. Daniel S.L., Keith E.S., Yang H., Lin Y.S., Drake H.L. Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the co-dependent O-demethylating activity // Biochem. Biophys. Res. Commun. 1991. V. 180. P. 416–422.
  22. Defnoun S., Labat M., Ambrosio M., Garcia J.L., Patel B.K. Papillibacter cinnamivorans gen. nov., sp. nov., a cinnamate-transforming bacterium from a shea cake digester // Int. J. Syst. Evol. Microbiol. 2000. V. 50. P. 1221–1228.
  23. Dehning I., Stieb M., Schink B. Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate and succinate // Arch. Microbiol. 1989. V. 151. P. 421–426.
  24. DeWeerd K.A., Mandelco L., Tanner R.S., Woese C.R., Suflita J.M. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium // Arch. Microbiol. 1990. V. 154. P. 23–30.
  25. DeWeerd K.A., Saxena A., Nagle D.P., Jr., Suflita J.M. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria // Appl. Environ. Microbiol. 1988. V. 54. P. 1237–1242.
  26. Dürichen H., Diekert G., Studenik S. Redox potential changes during ATP-dependent corrinoid reduction determined by redox titrations with europium(II)-DTPA // Protein Sci. 2019. V. 28. P. 1902–1908.
  27. Engelmann T., Kaufmann F., Diekert G. Isolation and characterization of a veratrol:corrinoid protein methyl transferase from Acetobacterium dehalogenans // Arch. Microbiol. 2001. V. 175. P. 376–383.
  28. Frazer A.C. O-Demethylation and other transformations of aromatic compounds by acetogenic bacteria // Acetogenesis / Eds. Drake H.L. Chapman & Hall Microbiology Series. Boston: Springer, 1994. P. 445–483.
  29. Grbić-Galić D. Fermentative and oxidative transformation of ferulate by a facultatively anaerobic bacterium isolated from sewage sludge // Appl. Environ. Microbiol. 1985. V. 50. P. 1052–1057.
  30. Grech-Mora M.L., Fardeau M.L., Patel B.K.C., Ollivier B., Rimbault A., Prensier G., Garcia J.L., Garnier-Sillam E. Isolation and characterization of Sporobacter termitidis gen.nov., sp. nov., from the digestive tract of the wood-feeding termite // Int. J. Syst. Evol. Microbiol. 1996. V. 46. P. 512–518.
  31. Greening R.C., Leedle J.A. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen // Arch. Microbiol. 1989. V. 151. P. 399–406.
  32. Haddock J.D., Ferry J.G. Purification and properties of phloroglucinol reductase from Eubacterium oxidoreducens G-41 // J. Biol. Chem. 1989. V. 264. P. 4423– 4427.
  33. Hagel J., Facchini P. Biochemistry and occurrence of O-demethylation in plant metabolism // Front. Physiol. 2010. V. 1. P. 14.
  34. Häggblom M.M., Berman M.H., Frazer A.C., Young L.Y. Anaerobic O-demethylation of chlorinated guaiacols by Acetobacterium woodii and Eubacterium limosum // Biodegradation. 1993. V. 4. P. 107–114.
  35. Hatcher P.G., Clifford D.J. The organic geochemistry of coal: from plant materials to coal // Org. Geochem. 1997. V. 27. P. 251–274.
  36. Harwood C.S., Burchhardt G., Herrmann H., Fuchs G. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway // FEMS Microbiol. Rev. 1999. V. 22. P. 4439–4458.
  37. Harwood C.S., Gibson J. Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris //Appl. Environ. Microbiol. 1988. V. 54. P. 712–717.
  38. Hattori S., Kamagata Y., Hanada S., Shoun H. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium // Int. J. Syst. Evol. Microbiol. 2000. V. 50. P. 1601–1609.
  39. Healy J.B., Young L.Y. Anaerobic biodegradation of eleven aromatic compounds to methane // Appl. Environ. Microbiol. 1979. V. 38. P. 84–89.
  40. Holmes D.E., Risso C., Smith J.A., Lovley D.R. Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus // ISME J. 2012. V. 6. P. 146–157.
  41. Kane M.D., Breznak J.A. Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis // Arch. Microbiol. 1991. V. 156. P. 91–98.
  42. Kaufmann F., Wohlfarth G., Diekert G. Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC // Arch. Microbiol. 1997. V. 166. P. 136–142.
  43. Kaufmann F., Wohlfarth G., Diekert G. O-demethylase from Acetobacterium dehalogenans ‒ cloning, sequencing, and active expression of the gene encoding the corrinoid protein // Eur. J. Biochem. 1998a. V. 257. P. 515–521.
  44. Kaufmann F., Wohlfarth G., Diekert G. O-demethylase from Acetobacterium dehalogenans ‒ substrate specificity and function of the participating proteins // Eur. J. Biochem. 1998b. V. 253. P. 706–711.
  45. Khomyakova M.A., Merkel A.Y., Kopitsyn D.S., Bonch-Osmolovskaya E.A., Slobodkin A.I. Calorimonas adulescens gen. nov., sp. nov., an anaerobic thermophilic bacterium utilizing methoxylated benzoates // Int. J. Syst. Evol. Microbiol. 2020a. V. 70. P. 2066–2071.
  46. Khomyakova M., Merkel A., Novikov A., Klyukina A., Slobodkin A. Alkalibacter mobilis sp. nov., an anaerobic bacterium isolated from a coastal lake // Int. J. Syst. Evol. Microbiol. 2021. V. 71. Art. 5174.
  47. Khomyakova M.A., Merkel A.Y., Petrova D.A., Bonch-Osmolovskaya E.A., Slobodkin A.I. Alkalibaculum sporogenes sp. nov., isolated from a terrestrial mud volcano and emended description of the genus Alkalibaculum // Int. J. Syst. Evol. Microbiol. 2020b. V. 70. P. 4914–4919.
  48. Kluge C., Tschech A., Fuchs G. Anaerobic metabolism of resorcyclic acids (m-dihydroxybenzoic acids) and resorcinol (1,3-benzenediol) in a fermenting and in a denitrifying bacterium // Arch. Microbiol. 1990. V. 155. P. 68–74.
  49. Krumholz L.R., Bryant M.P. Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate // Int. J. Syst. Bacteriol. 1985. V. 35. P. 454–456.
  50. Krumholz L.R., Bryant M.P. Syntrophococcus sucromutans sp. nov., gen. nov. uses carbohydrates as electron donors and formate, methoxybenzenoids or Methanobrevibacter as electron acceptor systems // Arch. Microbiol. 1986. V. 143. P. 313–318.
  51. Kuever J., Rainey F.A., Hippe H. Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp. nov. // Int. J. Syst. Bacteriol. 1999. V. 49. P. 1801–1808.
  52. Kuhner C.H., Frank C., Griesshammer A., Schmittroth M., Acker G., Gössner A., Drake H.L. Sporomusa silvacetica sp, nov., an acetogenic bacterium isolated from aggregated forest soil // Int. J. Syst. Bacteriol. 1997. V. 47. P. 352–358.
  53. Kurth J.M., Nobu M.K., Tamaki H., de Jonge N., Berger S., Jetten M.S.M., Yamamoto K., Mayumi D., Sakata S., Bai L., Cheng L., Nielsen J.L., Kamagata Y., Wagner T., Welte C.U. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds // ISME J. 2021. V. 15. P. 3549–3565.
  54. Kurth J.M., Op den Camp H.J.M., Welte C.U. Several ways one goal-methanogenesis from unconventional substrates // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 6839–6854.
  55. Küsel K., Dorsch T., Acker G., Stackebrandt E., Drake H.L. Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments // Int. J. Syst. Evol. Microbiol. 2000. V. 50. P. 537–546.
  56. Lechtenfeld M., Heine J., Sameith J., Kremp F., Müller V. Glycine betaine metabolism in the acetogenic bacterium Acetobacterium woodii // Environ. Microbiol. 2018. V. 20. P. 4512–4525.
  57. Lehmann J., Kleber M. The contentious nature of soil organic matter // Nature. 2015. V. 528. P. 60–68.
  58. Libes S.M. The origin of petroleum in the marine environment // Introduction to Marine Biogeochemistry. Amsterdam: Elsevier Science, 2009. P. 1–33.
  59. Liesack W., Back F., Kreft J.U., Stackebrandt E. Holophaga foetida gen. nov., sp. nov., a new homoacetogenic bacterium degrading methoxylated aromatic compounds // Arch. Microbiol. 1994. V. 162. P. 85–90.
  60. Lloyd M.K., Trembath-Reichert E., Dawson K.S., Feakins S.J., Mastalerz M., Orphan V.J., Sessions A.L., Eiler J.M. Methoxyl stable isotopic constraints on the origins and limits of coal-bed methane // Science. 2021. V. 374. P. 894–897.
  61. Löffler C., Kuntze K., Vazquez J.R., Rugor A., Kung J.W., Böttcher A., Boll M. Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria // Environ. Microbiol. 2011. V. 13. P. 696–709.
  62. Löffler F.E., Yan J., Ritalahti K.M., Adrian L., Edwards E.A., Konstantinidis K.T., Müller J.A., Fullerton H., Zinder S.H., Spormann A.M. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi // Int. J. Syst. Evol. Microbiol. 2013. V. 63. P. 625–635.
  63. Lomans B.P., Leijdekkers P., Wesselink J.-J., Bakkes P., Pol A., van der Drift C., Op den Camp H.J.M. Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov. // Appl. Environ. Microbiol. 2001. V. 67. P. 4017–4023.
  64. Lomans B.P., Op den Camp H.J., Pol A., van der Drift C., Vogels G.D. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments // Appl. Environ. Microbiol. 1999. V. 65. P. 2116–2121.
  65. Lomans B.P., van der Drift C., Pol A., Op den Camp H.J. Microbial cycling of volatile organic sulfur compounds // Cell. Mol. Life Sci. 2002. V. 59. P. 575–588.
  66. López Barragán M.J., Carmona M., Zamarro M.T., Thiele B., Boll M., Fuchs G., García J.L., Díaz E. The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB // J. Bacteriol. 2004. V. 186. P. 5762–5774.
  67. Lorowitz W.H., Bryant M.P. Peptostreptococcus productus strain that grows rapidly with CO as the energy source // Appl. Environ. Microbiol. 1984. V. 47. P. 961–964.
  68. Lu P., Huang H., Sun Y., Qiang M., Zhu Y., Cao M., Peng X., Yuan B., Feng Z. Biodegradation of 4-hydroxybenzoic acid by Acinetobacter johnsonii FZ-5 and Klebsiella oxytoca FZ-8 under anaerobic conditions // Biodegradation. 2022. V. 33. P. 17–31.
  69. Lux M.F., Drake H.L. Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth // FEMS Microbiol. Lett. 1992. V. 95. P. 49–56.
  70. Masai E., Katayama Y., Fukuda M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin derived aromatic compounds // Biosci. Biotechnol. Biochem. 2007. V. 71. 1e15.
  71. Mayumi D., Mochimaru H., Tamaki H., Yamamoto K., Yoshioka H., Suzuki Y., Kamagata Y., Sakata S. Methane production from coal by a single methanogen // Science. 2016. V. 354. P. 222–225.
  72. Mechichi T., Labat M., Garcia J.-L., Thomas P., Pate B.K.C. Sporobacterium olearium gen. nov., sp. nov., a new methanethiol-producing bacterium that degrades aromatic compounds, isolated from an olive mill wastewater treatment digester // Int. J. Syst. Bacteriol. 1999a. V. 49. P. 1741–1748.
  73. Mechichi T., Labat M., Patel B.K., Woo T.H., Thomas P., Garcia J.L. Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylating homoacetogen from an olive mill wastewater treatment digester // Int. J. Syst. Bacteriol. 1999b. V. 49. P. 1201–1209.
  74. Mingo F.S., Studenik S., Diekert G. Conversion of phenyl methyl ethers by Desulfitobacterium spp. and screening for the genes involved // FEMS Microbiol. Ecol. 2014. V. 90. P. 783–790.
  75. Möller B., Oßmer R., Howard B.H., Gottschalk G., Hippe H. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. // Arch. Microbiol. 1984. V. 139. P. 388–396.
  76. Mountfort D.O., Grant W.D., Clarke R., Asher R. Eubacterium callanderi sp. nov. that demethoxylates O-methoxylated aromatic acids to volatile fatty acids // Int. J. Syst. Evol. Microbiol. 1988. V. 38. P. 254‒258.
  77. Naidu D., Ragsdale S.W. Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica // J. Bacteriol. 2001. V. 183. P. 3276–3281.
  78. Oshlag J.Z., Ma Y., Morse K., Burger B.T., Lemke R.A., Karlen S.D., Myers K.S., Donohue T.J., Noguera D.R. Anaerobic degradation of syringic acid by an adapted strain of Rhodopseudomonas palustris // Appl. Environ. Microbiol. 2020. V. 86. e01888-19.
  79. Paarup M., Friedrich M.W., Tindall B.J., Finster K. Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum // Antonie Van Leeuwenhoek. Int. J. 2006. V. 89. P. 55–69.
  80. Parekh M., Keith E.S., Daniel S.L., Drake H.L. Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds // FEMS Microbiol. Lett. 1992. V. 73. P. 69–74.
  81. Pierce E., Xie G., Barabote R.D., Saunders E., Han C.S., Detter J.C., Richardson P., Brettin T.S., Das A., Ljungdahl L.G., Ragsdale S.W. The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum) // Environ. Microbiol. 2008. V. 10. P. 2550–2573.
  82. Ragsdale S.W. Catalysis of methyl group transfers involving tetrahydrofolate and B12 // Vitam. Horm. 2008. V. 79. P. 293–324.
  83. Reichenbecher W., Schink B. Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone // Arch. Microbiol. 1997. V. 168. P. 338–344.
  84. Ritter D., Vinson D., Barnhart E., Akob D.M., Fields M.W., Cunningham A.B., Orem W., McIntosh J.C. Enhanced microbial coalbed methane generation: a review of research, commercial activity, and remaining challenges // Int. J. Coal. Geol. 2015. V. 146. P. 28–41.
  85. Rosazza J.P., Huang Z., Dostal L., Volm T., Rousseau B. Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product // J. Ind. Microbiol. 1995. V. 15. P. 457–471.
  86. Sakamoto S., Nobu M.K., Mayumi D., Tamazawa S., Kusada H., Yonebayashi H., Iwama H., Ikarashi M., Wakayaääma T., Maeda H., Sakata S., Tamura T., Nomura N., Kamagata Y., Tamaki H. Koleobacter methoxysyntrophicus gen. nov., sp. nov., a novel anaerobic bacterium isolated from deep subsurface oil field and proposal of Koleobacteraceae fam. nov. and Koleobacterales ord. nov. within the class Clostridia of the phylum Firmicutes // Syst. Appl. Microbiol. 2021. V. 44. Art. 126154.
  87. Sanford R.A., Cole J.R., Löffler F.E., Tiedje J.M. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate // Appl. Environ. Microbiol. 1996. V. 62. P. 3800–3808.
  88. Schilhabel A., Studenik S., Vödisch M., Kreher S., Schlott B., Pierik A.J., Diekert G. The ether-cleaving methyltransferase system of the strict anaerobe Acetobacterium dehalogenans: analysis and expression of the encoding genes // J. Bacteriol. 2009. V. 191. P. 588–599.
  89. Schink B., Philipp B., Müller J. Anaerobic degradation of phenolic compounds // Naturwissenschaften. 2000. V. 87. P. 12–23.
  90. Schmid G., Auerbach H., Pierik A.J., Schünemann V., Boll M. ATP-dependent electron activation module of benzoyl-coenzyme A reductase from the hyperthermophilic archaeon Ferroglobus placidus // Biochemistry. 2016. V. 55. P. 5578–5586.
  91. Siebert A., Schubert T., Engelmann T., Studenik S., Diekert G. Veratrol-O-demethylase of Acetobacterium dehalogenans: ATP-dependent reduction of the corrinoid protein // Arch. Microbiol. 2005. V. 183. P. 378–384.
  92. Sjuts H., Dunstan M.S., Fisher K., Leys D. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2 // Acta Crystallogr. D. Biol. Crystallogr. 2013. V. 69. P. 1609–1616.
  93. Sjuts H., Dunstan M.S., Fisher K., Leys D. Structures of the methyltransferase component of Desulfitobacterium hafniense DCB-2 O-demethylase shed light on methyltetrahydrofolate formation // Acta Crystallogr. D. Biol. Crystallogr. 2015. V. 71. P. 1900–1908.
  94. Stackebrandt E., Sproer C., Rainey F.A., Burghardt J., Päuker O., Hippe H. Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. // Int. J. Syst. Bacteriol. 1997. V. 47. P. 1134–1139.
  95. Studenik S., Kreher S., Diekert G. The ether-cleaving methyltransferase of the strict anaerobe Acetobacterium dehalogenans: analysis of the zinc-binding site // FEMS Microbiol Lett. 2011. V. 318. P. 131–136.
  96. Studenik S., Vogel M., Diekert G. Characterization of an O‑demethylase of Desulfitobacterium hafniense DCB-2 // J. Bacteriol. 2012. V. 194. P. 3317–3326.
  97. Stupperich E., Konle R. Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism by Sporomusa ovata // Appl. Environ. Microbiol. 1993. V. 59. P. 3110–3116.
  98. Stupperich E., Konle R., Eckerskorn C. Anaerobic O-demethylations of methoxynaphthols, methoxyfuran, and fluoroanisols by Sporomusa ovata // Biochem. Biophys. Res. Commun. 1996. V. 223. P. 770–777.
  99. Subramanian M., Tuckey J., Patel B., Jensen P.J. Engineering dicamba selectivity in crops: a search for appropriate degradative enzyme(s) // J. Ind. Microbiol. Biotech. 1997. V. 19. P. 344–349.
  100. Tanaka K., Pfennig N. Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus // Arch. Microbiol. 1988. V. 149. P. 181–187.
  101. Taylor B.F. Aerobic and anaerobic catabolism of vanillic acid and some other methoxy-aromatic compounds by Pseudomonas sp. strain PN-1 // Appl. Environ. Microbiol. 1983. V. 46. P. 1286–1292.
  102. Tasaki M., Kamagata Y., Nakamura K., Mikami E. Utilization of methoxylated benzoates and formation of intermediates by Desulfotomaculum thermobenzoicum in the presence or absence of sulfate // Arch. Microbiol. 1992. V. 157. P. 209–212.
  103. Traunecker J., Preuß A., Diekert G. Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium // Arch. Microbiol. 1991. V. 156. Art. 4162421.
  104. Utkin I., Woese C., Wiegel J. Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds // Int. J. Syst. Bacteriol. 1994. V. 44. P. 612–619.
  105. Vanholme R., Demedts B., Morreel K., Ralph J., Boerjan W. Lignin biosynthesis and structure // Plant Physiol. 2010. V. 153. P. 895–905.
  106. Venkatesagowda B., Dekker R.F.H. Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups // Enzyme Microb. Technol. 2021. V. 147. Art. 109780.
  107. Wang S., Chen Y., Cao Q., Lou H. Long-lasting gene conversion shapes the convergent evolution of the critical methanogenesis genes // G3. 2015. V. 5. P. 2475–2486.
  108. Welte C.U. A microbial route from coal to gas // Science. 2016. V. 354. P. 184.
  109. Welte C.U., de Graaf R., Dalcin Martins P., Jansen R.S., Jetten M.S.M., Kurth J.M. A novel methoxydotrophic metabolism discovered in the hyperthermophilic archaeon Archaeoglobus fulgidus // Environ. Microbiol. 2021. V. 23. P. 4017–4033.
  110. Wischgoll S., Heintz D., Peters F., Erxleben A., Sarnighausen E., Reski R., Van Dorsselaer A., Boll M. Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens // Mol. Microbiol. 2005. V. 58. P. 1238–1252.
  111. Wright G.E., Madigan M.T. Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodomicrobium vannielii // Appl. Environ. Microbiol. 1991. V. 57. P. 2069–2073.
  112. Yin X., Cai M., Liu Y., Zhou G., Aromokeye D.A., Kulkarni A.C., Nimzyk R., Cullhed H., Zhou Z., Pan J., Yang Y., Gu J.D., Elvert M., Li M., Friedrich M.W. Subgroup level differences of physiological activities in marine Lokiarchaeota // ISME J. 2020. V. 15. P. 848–861.
  113. Yu T., Wu W., Liang W., Alexander M., Hinrichs K.U. Growth of sedimentary Bathyarchaeota on lignin as an energy source // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. 6022–6027.
  114. Zakzeski J. The catalytic valorization of lignin for the production of renewable chemicals // Chem. Rev. 2010. V. 110. P. 3552–3599.
  115. Zeikus J.G. Lignin metabolism and the carbon cycle // Advances in Microbial Ecology / Eds. Alexander M. Boston (MA): Springer, 1981. P. 211–243.
  116. Zeikus J.G., Lynd L.H., Thompson T.E., Krzycki JA., Weimer P.J., Hegge P.W. Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the marburg strain // Curr. Microbiol. 1980. V. 3. P. 381–386.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (82KB)
3.

Download (91KB)

Copyright (c) 2023 М.А. Хомякова, А.И. Слободкин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies