ВНЕКЛЕТОЧНАЯ ДЕТОКСИКАЦИЯ ЦИНКА ГРИБАМИ PENICILLIUM CHRYSOGENUM И ASPERGILLUS NIGER

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Микроскопические грибы являются перспективными объектами для биоремедиации, благодаря их способности переводить металлы в менее подвижные и доступные для организмов формы. В выполненном исследовании показано, что грибы Penicillium chrysogenum и Aspergillus niger обладают физиологическими механизмами экстраклеточной детоксикации цинка при его исходной концентрации 250 мкмоль – 2 ммоль в среде. В концентрациях 250–500 мкмоль Zn способствует накоплению биомассы и обильному спороношению A. niger и Penicillium chrysogenum, а в концентрациях 1–2 ммоль подавляет рост грибов. Экстраклеточная детоксикация цинка грибом Aspergillus niger происходит путем образования двуводного оксалата цинка катсаросита, благодаря активному биосинтезу щавелевой кислоты. Основным механизмом детоксикации цинка Penicillium chrysogenum было образование фосфата цинка (гопеита). Образование фосфата цинка (гопеита) под действием гриба было установлено впервые. Ключевыми факторами, определяющими направление процессов образования внеклеточных минеральных фаз, являются количества продуцируемых грибами экстраклеточных полимерных соединений и щавелевой кислоты, а также изменение pH среды в процессе роста культур.

Об авторах

К. В. Сазанова

Ботанический институт им. В.Л. Комарова РАН; Санкт-Петербургский государственный университет; Санкт-Петербургский филиал Архива Российской академии наук

Автор, ответственный за переписку.
Email: ksazanova@binran.ru
Россия, 197376, Санкт-Петербург; Россия, 199034, Санкт-Петербург; Россия, 196084, Санкт-Петербург

М. С. Зеленская

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: marsz@yandex.ru
Россия, 199034, Санкт-Петербург

А. В. Корнеев

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: a_v_korneev@list.ru
Россия, 199034, Санкт-Петербург

Д. Ю. Власов

Ботанический институт им. В.Л. Комарова РАН; Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: dmitry.vlasov@mail.ru
Россия, 197376, Санкт-Петербург; Россия, 199034, Санкт-Петербург

Список литературы

  1. Abbas S.H., Ismail I.M., Mostafa T.M. et al. Biosorption of heavy metals: A review. J. Chemical Sci. Technol. 2014. V. 3 (4). P. 74–102.
  2. Achal V., Pan X., Zhang D. Remediation of copper-conta-minated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering. 2011. V. 37 (10). P. 1601–1605. https://doi.org/10.1016/j.ecoleng.2011.06.008
  3. Anbu P., Kang C.H., Shin Y.J. et al. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus. 2016. V. 5 (250). https://doi.org/10.1186/s40064-016-1869-2
  4. Ashikhmina T.Ya. (ed.). Microorganisms as agents of biomonitoring and bioremediation of polluted soils. Kirov, 2018 (in Russ.).
  5. Balasubramanian B., Ilavenil S., Al-Dhabi N.A. et al. Isolation and characterization of Aspergillus sp. for the production of extracellular polysaccharides by response surface methodology. Saudi J. Biol. Sci. 2019. V. 26 (3). P. 449–454. https://doi.org/10.1016/j.sjbs.2018.10.015
  6. Chandran S.C., Shijith K.V., Vipin K.V. et al. Study on heavy metals toxicity biomarkers in Aspergillus niger. IJAPBC. 2014. V. 3. P. 458–464.
  7. Cotter-Howells J.D., Caporn S. Remediation of contamina-ted land by formation of heavy metal phosphates. Appl. Geochem. 1996. V. 11. P. 335–342.
  8. De Beeck M.O., Persson P., Tunlid A. Fungal extracellular polymeric substance matrices – Highly specialized microenvironments that allow fungi to control soil organic matter decomposition reactions. Soil Biol. Biochem. 2021. V. 159. Art. 108304. https://doi.org/10.1016/j.soilbio.2021.108304
  9. Dhankhar R., Hooda A. Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 2011. V. 32. P. 467–491.
  10. Fomina M., Alexander I.J., Hillier S. et al. Zinc phosphate and pyromorphite solubilization by soil-plant-symbiotic fungi. Geomicrobiology J. 2004. V. 21. P. 351–366. https://doi.org/10.1080/01490450490462066
  11. Fomina M., Hillier S., Charnock J.M. et al. Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl. Environm. Microbiol. 2005. V. 71 (1). P. 371–381.
  12. Gadd G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007. V. 111. P. 3–49.
  13. Gadd G.M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology. 2010. V. 156. P. 609–643.
  14. Gadd G.M., Bahri-Esfahani J., Li Q. et al. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 2014. V. 28. P. 36–55.
  15. Glukhova L.B., Frank Y.A., Danilova E.V. et al. Isolation, characterization, and metal response of novel, acid-tolerant Penicillium spp. from extremely metal-rich waters at a mining site in Transbaikal (Siberia, Russia). Microbial Ecol. 2018. V. 76. P. 911–924. https://doi.org/10.1007/s00248-018-1186-0
  16. Hess C.D., Lu W., Rabinowitz D.J. et al. Ammonium toxicity and potassium limitation in yeast. PLOS Biol. 2006. V. 4 (11). P. 2012–2023.
  17. Kampa M., Castanas E. Human health effects of air pollution. Environ. Pollut. 2008. V. 151. P. 362–367.
  18. Kim Y., Kwon S., Roh Y. Effect of divalent cations (Cu, Zn, Pb, Cd, and Sr) on microbially induced calcium carbo-nate precipitation and mineralogical properties. Front. Microbiol. 2021. V. 12. Art. 646748. https://doi.org/10.3389/fmicb.2021.646748
  19. Leitão A.L. Potential of Penicillium species in the bioremediation field. Int. J. Environm. Res. Public Health. 2009. V. 6. P. 1393–1417. https://doi.org/10.3390/ijerph6041393
  20. Li Q., Gadd G.M. Fungal nanoscale metal carbonates and production of electrochemical materials. Microbial Biotechnol. 2017. V. 10 (5). P. 1131–1136. https://doi.org/10.1111/1751-7915.12765
  21. Mahapatra S., Banerjee D. Fungal exopolysaccharide: Production, composition and applications. Microbiol. Insights. 2013. V. 6. 1MBI-S10957.
  22. Martino P.D. What about biofilms on the surface of stone monuments? The Open Conference Proceedings J. 2016. V. 9. P. 14–28. https://doi/https://doi.org/10.2174/2210289201607020014
  23. Mukhopadhyay M., Noronha S.B., Suraishkumar G.K. A review on experimental studies of biosorption of heavy metals by Aspergillus niger. Can. J. Chem. Eng. 2011. V. 89. P. 889–900.
  24. Mukhopadhyay M., Noronha S.B., Suraishkumar G.K. A review on experimental studies of biosorption of heavy metals by Aspergillus niger. Can. J. Chem. Eng. 2011. 89. P. 889–900.
  25. Munir E., Hattori T., Shimada M. Role for oxalate acid biosynthesis in growth of copper tolerant wood-rotting and pathogenic fungi under environmental stress. The 55th meeting of the Japan wood research society. Tokyo, 2005, pp. 1–7.
  26. Pacyna J.M., Pacyna E.G. An assessment of global andregional emissions of trace metals to the atmosphere fromanthropogenic sources worldwide. Environ. Rev. 2001. V. 9 (4). P. 269–298.
  27. Rehan M., Alsohim A.S. Bioremediation of heavy metals, environmental chemistry and recent pollution control approaches. IntechOpen. 2019. https://doi.org/10.5772/intechopen.88339
  28. Rhee Y.J., Hillier S., Gadd G.M. Lead transformation to pyromorphite by fungi. Current Biol. 2012. V. 22. P. 237–241.https://doi.org/10.1016/j.cub.2011.12.017
  29. Santamaria F., Reyes F. Proteases produced during autolysis of filamentous fungi. Trans. Br. Mycol. Soc. 1988. V. 91. P. 217–220.
  30. Salvadori O., Municchia A.C. The role of fungi and lichens in the biodeterioration of stone monuments. The Open Conference Proceeding J. 2015. № 6 (Suppl 1: M 4). P. 70–82. https://doi.org/10.2174/2210289201607020039
  31. Sayer J.A., Gadd G.M. Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate. Mycol. Res. 2001. V. 105. P. 1261–1267.
  32. Sazanova (nee Barinova) K.V., Frank-Kamenetskaya O.V., Vlasov D.Y. et al. Carbonate and oxalate crystallization by interaction of calcite marble with Bacillus subtilis and Bacillus subtilis – Aspergillus niger association. Crystals. 2020. V. 10. P. 756. https://doi.org/10.3390/cryst10090756
  33. Sazanova K., Osmolovskaya N., Schiparev S. et al. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions. Current Microbiol. 2015. 70 (4). P. 520–527. https://doi.org/10.1007/s00284-014-0751-0
  34. Sazanova K.V., Zelenskaya M.S., Izatulina A.R. et al. Carbonate and oxalate crystallization effected by the meta-bolism of fungi and bacteria in various trophic conditions: The case of Penicillium chrysogenum and Penicillium chrysogenum with Bacillus subtilis. Crystals. 2023. V. 13. P. 94. https://doi.org/10.3390/cryst13010094
  35. Siddiquee S., Rovina K., Al Azad S. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. J. Microb. Biochem. Technol. 2015. V. 7. P. 384–393.
  36. Sutjaritvorakul T., Gadd G.M., Whalley A. et al. Zinc oxalate crystal formation by Aspergillus nomius. Geomicrobiology. 2015. V. 33 (3). https://doi.org/10.1080/01490451.2015.1048395
  37. Tan T., Che P. Biosorption of metal ions with Penicillium chrysogenum. Appl. Biochem. Biotechnol. 2003. V. 104. P. 119–128.
  38. Tian D., Jiang Z., Jiang L. et al. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum. Environ. Microbiol. 2019. V. 21. P. 471–479.
  39. Vlasov D.Yu. (ed.). Aspergillus niger. N.Y., 2020.
  40. Xu X., Hao R., Xu H. et al. Removal mechanism of Pb (II) by Penicillium polonicum: immobilization, adsorption, and bioaccumulation. Scientific Reports. 2020. V. 10. Art. 9079. https://doi.org/10.1038/s41598-020-66025-6
  41. Zhao J., Csetenyi L., Gadd G.M. Fungal-induced CaCO3 and SrCO3 precipitation: a potential strategy for bioprotection of concrete. Sci Total Environm. 2022. V. 816. Art. 151501. https://doi.org/10.1016/j.scitotenv.2021.151501
  42. Zhu T., Dittrich M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Front. Bioeng. Biotechnol. 2016. V. 4 (4). https://doi.org/10.3389/fbioe.2016.00004
  43. Ашихмина Т.Я. (ред.) (Asikhmina) Микроорганизмы как агенты биомониторинга и биоремедиации загрязненных почв. Киров, Науч. изд-во ВятГУ, 2018. 256 с.

Дополнительные файлы


© К.В. Сазанова, М.С. Зеленская, А.В. Корнеев, Д.Ю. Власов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах