Molecular identification of wood-decaying fungi of Armillaria genus widespread in Eastern Siberia and the Far East of Russia using ITS, IGS-1-1 and Tef-1α genetic markers

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The genus Armillaria is an essential component of forest ecosystems playing very important ecological role in dead wood decomposition, but it often becomes a serious pathogen causing white root rot in trees. It is also known that Armillaria species significantly differ in the level of pathogenicity. Thus, accurate identification of Armillaria is critical for assessing the risk of tree disease. In this study we analyzed 28 Armillaria isolates from Siberia and the Far East using nucleotide sequences of ITS, IGS-1-1 and TEF-1α gene regions and generated phylogenetic trees based on maximum likelihood method. In total, four Armillaria species were identified: A borealis, A. cepistipes, A. ostoyae and A. gallica. A. borealis was the most frequent among collected isolates (18 out of 28 isolates). A. gallica, A. cepistipes and A. ostoyae were much less frequent with two, five and three isolates out of 28, respectively. Thedistribution of Armillaria species in Siberia and the Far East was described for the first time. It is concluded that further studies are necessary to determine the role of Armillaria in trees pathological dieback, and A. borealis should be a key focus.

Sobre autores

A. Kolesnikova

Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”

Email: kolesnikova.denovo@gmail.com
Rússia, Krasnoyarsk

I. Pavlov

V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Email: forester24@mail.ru
Rússia, Krasnoyarsk; Krasnoyarsk

Y. Litovka

V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Email: litovkajul@rambler.ru
Rússia, Krasnoyarsk; Krasnoyarsk

N. Oreshkova

Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”; V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences; G.F. Morozov Voronezh State University of Forestry and Technologies

Email: oreshkova@ksc.krasn.ru

Институт фундаментальной биологии и биотехнологии

Rússia, Krasnoyarsk; Krasnoyarsk; Voronezh

А. Timofeev

Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”

Email: timofeyev95@gmail.com
Rússia, Krasnoyarsk

Е. Litvinova

Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”

Email: litvinovaek22@ya.ru
Rússia, Krasnoyarsk

S. Petrenko

Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”

Email: stefaniya_vuytovich@mail.ru
Rússia, Krasnoyarsk

К. Krutovsky

Siberian Federal University; G.F. Morozov Voronezh State University of Forestry and Technologies; Georg-August University of Göttingen; N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: konstantin.krutovsky@forst.uni-goettingen.de

Institute of Fundamental Biology and Biotechnology

Rússia, Krasnoyarsk; Voronezh; Göttingen, Germany; Moscow

Bibliografia

  1. Alves E., Lucas G.C., Pozza E.A. et al. Scanning electron microscopy for fungal sample examination. In: V.K. Gupta etc. (eds). Laboratory protocols in fungal biology: current methods in fungal biology. Springer, N.Y., 2013, pp. 133–150.
  2. Anderson J.B., Stasovski E. Molecular phylogeny of northern hemisphere species of Armillaria. Mycologia. 1992. V. 84. P. 505–516. https://doi.org/10.1080/00275514.1992.12026170
  3. Antonín V., Tomšovský M., Sedlák P. et al. Morphological and molecular characterization of the Armillaria cepistipes – A. gallica complex in the Czech Republic and Slovakia. Mycol. Progress. 2009. V. 8. P. 259–271 https://doi.org/10.1007/s11557-009-0597-1
  4. Baumgartner K., Coetzee M.P.A., Hoffmeister D. Secrets of the subterranean pathosystem of Armillaria. Mol. Plant Pathol. 2011. V. 12. № 6. P. 515–534. https://doi.org/10.1111/j.1364-3703.2010.00693.x
  5. Bendel M., Kienast F., Bugmann H. et al. Incidence and distribution of Heterobasidion and Armillaria and their influence on canopy gap formation in unmanaged mountain pine forests in the Swiss Alps. Eur. J. Plant Pathol. 2006. V. 116. P. 85–93. https://doi.org/10.1007/s10658-006-9028-1
  6. Bryant D., Hahn M.W. The concatenation question. In: C. Scornavacca etc. (eds). Phylogenetics in the genomic era. 2020. Online Collection PGE. https://hal.inria.fr/PGE
  7. Burnham K.P., Anderson D.R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 2004. V. 33. P. 261–304. https://doi.org/10.1177/0049124104268644
  8. Cai L., Giraud T., Zhang N. et al. The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers. 2011. V. 50. Art. 121. https://doi.org/10.1007/s13225-011-0127-8
  9. Coetzee M.P.A., Wingfield B.D., Wingfield M.J. Armillaria root-rot pathogens: species boundaries and global distribution. Pathogens. 2018. V. 7. Art. 83. https://doi.org/10.3390/pathogens7040083
  10. Collins C., Keane T.M., Turner D.J. et al. Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J. Proteome Res. 2013. V. 12. P. 2552–2570. https://doi.org/10.1021/pr301131t
  11. Cruickshank M.G., Morrison D.J., Punja Z.K. Incidence of Armillaria species in precommercial thinning stumps and spread of Armillaria ostoyae to adjacent Douglas-fir trees. Can. J. For. Res. 2011. V. 27. P. 481–490. https://doi.org/10.1139/x96-185
  12. Denman S., Barrett G., Kirk S.A. et al. Identification of Armillaria species on declined oak in Britain: implications for oak health, Forestry. Int. J. For. Res. V. 90. № 1. P. 48–161. https://doi.org/10.1093/forestry/cpw054
  13. Dettman J.R., van der Kamp B.J. The population structure of Armillaria ostoyae and Armillaria sinapina in the central interior of British Columbia. Can. J. Bot. 2011. V. 79. № 5. P. 521–527. https://doi.org/10.1139/b01-033
  14. Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004. V. 32. № 5. P. 1792–1797. https://doi.org/10.1093/nar/gkh340
  15. Gouy M., Guindon S., Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010. V. 27. P. 221–224. https://doi.org/10.1093/molbev/msp259
  16. Gregory S.C., Watling R. Occurrence of Armillaria borealis in Britain. Trans. Brit. Mycol. Soc. 1985. V. 84. P. 47–55. https://doi.org/10.1016/S0007-1536(85)80219-9
  17. Guillaumin J.J., Mohammed C., Anselmi N. et al. Geographical distribution and ecology of the Armillaria species in western Europe. Eur. J. Forest Pathol. 1993. V. 23. P. 321–341. https://doi.org/10.1111/j.1439-0329.1993.tb00814.x
  18. Guo T., Wang H.C., Xue W.Q. et al. Phylogenetic analyses of Armillaria reveal at least 15 phylogenetic lineages in China, seven of which are associated with cultivated Gastrodia elata. PLOS One. 2016. V. 11. Art. e0154794. https://doi.org/10.1371/journal.pone.0154794
  19. Harrington T.C., Wingfield B.D. A PCR-based identification method for species of Armillaria. Mycologia. 1995. V. 87. P.280–288. https://doi.org/10.1080/00275514.1995.12026531
  20. He M.Q., Zhao R.-L., Hyde K.D. et al. Notes, outline and divergence times of Basidiomycota. Fungal Diversity. 2019. V. 99. P. 105–367. https://doi.org/10.1007/s13225-019-00435-4
  21. Heinzelmann R., Prospero S., Rigling D. Virulence and stump colonization ability of Armillaria borealis on Norway spruce seedlings in comparison to sympatric Armillaria species. Plant Disease. 2016. V. 101. P. 470–479. https://doi.org/10.1094/PDIS-06-16-0933-RE
  22. Heinzelmann R., Rigling D., Sipos G. et al. Chromosomal assembly and analyses of genome-wide recombination rates in the forest pathogenic fungus Armillaria ostoyae. Heredity. 2020. V. 124. P. 699–713. https://doi.org/10.1038/s41437-020-0306-z
  23. Kalyaanamoorthy S., Minh B., Wong T. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017. V. 14. P. 587–589. https://doi.org/10.1038/nmeth.4285
  24. Kartavtsev Y.P., Redin A.D. Estimates of genetic introgression, gene tree reticulation, taxon divergence, and sustainability of DNA barcoding based on genetic molecular markers. Biol. Bull. Rev. 2019. V. 9. P. 275–294. https://doi.org/10.1134/S2079086419040042
  25. Kauserud H., Schumacher T. Outcrossing or inbreeding: DNA markers provide evidence for type of reproductive mode in Phellinus nigrolimitatus (Basidiomycota). Mycol. Res. 2001. V. 105. P. 676–683. https://doi.org/10.1017/S0953756201004191
  26. Kim M.-S., Klopfenstein N.B., McDonald G.I. et al. Characterization of North American Armillaria species by nuclear DNA content and RFLP analysis. Mycologia. 2000. V. 92. P. 874–883. https://doi.org/10.1080/00275514.2000.12061232
  27. Klopfenstein N.B., Stewart J.E., Ota Y. Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences. Mycologia. 2017. V. 109. P. 75–91. https://doi.org/10.1080/00275514.2017.1286572
  28. Koch R.A., Wilson A.W., Séné O. et al. Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative, Guyanagaster. BMC Evol. Biol. 2017. V. 17. Art. 33. https://doi.org/10.1186/s12862-017-0877-3
  29. Kolesnikova A.I., Pavlov I.N., Litovka Y.A. et al. Molecular identification of wood-decaying fungi of Armillaria genus widespread in Eastern Siberia and the Far East of Russia using ITS, IGS-1-1 and TEF-1Α genetic markers. Dataset. Figshare. 2023. https://doi.org/10.6084/m9.figshare.21644732.v6
  30. Korhonen K., Hintikka V. Simple isolation and inoculation methods for fungal cultures. Karstenia. 1980. V. 20. P. 19–22. https://doi.org/10.29203/ka.1980.192
  31. Lanfear R., Frandsen P.B., Wright A.M. et al. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017. V. 34. P. 772–773. https://doi.org/10.1093/molbev/msw260
  32. Legrand P., Ghahari S., Guillaumin J.-J. Occurrence of genets of Armillaria spp. in four mountain forests in Central France: the colonization strategy of Armillaria ostoyae. New Phytol. 1996. V. 133. P. 321–332. https://doi.org/10.1111/j.1469-8137.1996.tb01899.x
  33. Leigh J.W., Lapointe F.-J., Lopez P. et al. Evaluating phylogenetic congruence in the post-genomic Era. Genome Biol. Evol. 2011. V. 3. P. 571–587. https://doi.org/10.1093/gbe/evr050
  34. Leigh J.W., Susko E., Baumgartner M. et al. Testing congruence in phylogenomic analysis. Syst. Biol. 2008. V. 57. P. 104–115. https://doi.org/10.1080/10635150801910436
  35. Lushaj B.M., Woodward S., Keča N. et al. Distribution, ecology and host range of Armillaria species in Albania. For. Pathol. 2010. V. 40. P. 485–499. https://doi.org/10.1111/j.1439-0329.2009.00624.x
  36. Maphosa L., Wingfield B.D., Coetzee M.P.A. et al. Phylogenetic relationships among Armillaria species inferred from partial elongation factor 1-alpha DNA sequence data. Australas. Plant Pathol. 2006. V. 35. P. 513–520. https://doi.org/10.1071/AP06056
  37. Matute D.R., Sepúlveda V.E. Fungal species boundaries in the genomics era. Fungal Genet. Biol. 2019. V. 131. Art. 103249. https://doi.org/10.1016/j.fgb.2019.103249
  38. McGowen M.R., Clark C., Gatesy J. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods. Syst. Biol. 2008. V. 57. P. 574–590. https://doi.org/10.1080/10635150802304787
  39. Mesanza N., Patten C.L., Iturritxa E. Distribution and characterization of Armillaria complex in Atlantic forest ecosystems of Spain. Forests. 2017. V. 8. Art. 235. https://doi.org/10.3390/f8070235
  40. Morrison D.J. Rhizomorph growth habit, saprophytic ability and virulence of 15 Armillaria species. For. Pathol. 2004. V. 34. № 1. P. 15–26. https://doi.org/10.1046/j.1439-0329.2003.00345.x
  41. Morrison D.J., Pellow K.W. Variation in virulence among isolates of Armillaria ostoyae. For. Pathol. 2002. V. 32. P.99–107. https://doi.org/10.1046/j.1439-0329.2002.00275.x
  42. Mulholland V., MacAskill G.A., Laue B.E. et al. Development and verification of a diagnostic assay based on EF-1α for the identification of Armillaria species in Northern Europe. For. Pathol. 2012. V. 42. P. 229–238. https://doi.org/10.1111/j.1439-0329.2011.00747.x
  43. Nguyen L.T., Schmidt H.A., von Haeseler A. et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015. V. 32. P. 268–274. https://doi.org/10.1093/molbev/msu300
  44. Norkrans B. The effect of glutamic acid, aspartic acid, and related compounds on the growth of certain Tricholoma species. Physiol. Plant. 1953. V. 6. P. 584–593. https://doi.org/10.1111/j.1399-3054.1953.tb08415.x
  45. Okonechnikov K., Golosova O., Fursov M. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012. V. 28. № 8. P. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
  46. Omdal D.W., Shaw C.G., Jacobi W.R. et al. Variation of pathogenicity and virulence of isolates of Armillaria ostoyae on eight tree species. Plant Disease. 1995. V. 79. P. 939–944. https://doi.org/10.1094/PD-79-0939
  47. Pavlov I.N. Biotic and abiotic factors as causes of coniferous forests dieback in Siberia and Far East. Contemp. Probl. Ecol. 2015. V. 8. P. 440–456. https://doi.org/10.1134/S1995425515040125
  48. Prospero S., Holdenrieder O., Rigling D. Comparison of the virulence of Armillaria cepistipes and Armillaria ostoyae on four Norway spruce provenances. For. Pathol. 2004. V. 34. № 1. V. 1–14. https://doi.org/10.1046/j.1437-4781.2003.00339.x
  49. Prospero S., Holdenrieder O., Rigling D. Rhizomorph production and stump colonization by co-occurring Armillaria cepistipes and Armillaria ostoyae: an experimental study. For. Pathol. 2006. V. 36. P. 21–31. https://doi.org/10.1111/j.1439-0329.2006.00426.x
  50. Prospero S., Lung‐Escarmant B., Dutech C. Genetic structure of an expanding Armillaria root rot fungus (Armillaria ostoyae) population in a managed pine forest in southwestern France. Mol. Ecol. 2008. V. 17. P. 3366–3378. https://doi.org/10.1111/j.1365-294X.2007.03829.x
  51. Rishbeth J. Effects of soil temperature and atmosphere on growth of Armillaria rhizomorphs. Trans. Brit. Mycol. Soc. 1978. V. 70. P. 213–220. https://doi.org/10.1016/S0007-1536(78)80033-3
  52. Rishbeth J. Infection cycle of Armillaria and host response. Eur. J. Forest Pathol. 1985. V. 15. № 5–6. P. 332–341. https://doi.org/10.1111/j.1439-0329.1985.tb01108.x
  53. Rishbeth J. Species of Armillaria in southern England. Plant Pathol. 1982. V. 31. P. 9–17. https://doi.org/10.1111/j.1365-3059.1982.tb02806.x
  54. Ross-Davis A.L., Hanna J.W., Klopfenstein N.B. et al. Advances toward DNA-based identification and phylogeny of North American Armillaria species using elongation factor-1 alpha gene. Mycoscience. 2012. V. 53. P. 161–165. https://doi.org/10.1007/S10267-011-0148-x
  55. Shaw C.G., Kile G.A. Armillaria root disease. Agriculture handbook No. 691. Forest Service, Washington, 1991.
  56. Sipos G., Prasanna A.N., Walter M.C. et al. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat. Ecol. Evol. 2017. V. 1. P. 1931–1941. https://doi.org/10.1038/s41559-017-0347-8
  57. Tamura K., Nei M., Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS. 2004. V. 101. № 30. P. 11030–11035. https://doi.org/10.1073/pnas.0404206101
  58. Tamura K., Stecher G., Kumar S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021. V. 38. № 7. P. 3022–3027. https://doi.org/10.1093/molbev/msab120.
  59. Tsykun T., Rigling D., Prospero S. A new multilocus approach for a reliable DNA-based identification of Armillaria species. Mycologia. 2013. V. 105. P. 1059–1076. https://doi.org/10.3852/12-209.
  60. Vu D., Groenewald M., de Vries M. et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019. V. 92. № 1. P. 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  61. Wahlström K.T., Johansson M. Structural responses in bark to mechanical wounding and Armillaria ostoyae infection in seedlings of Pinus sylvestris. Eur. J. Forest Pathol. 1992. V. 22. P. 65–76. https://doi.org/10.1111/j.1439-0329.1992.tb01434.x
  62. White T.J., Bruns T., Lee S. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols. Elsevier, 1990, pp. 315–322.

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies