Temperature Dynamics of Growth, CO2 Gas Exchange and Competitiveness of Daedaleopsis confragosa and D. tricolor

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The temperature dynamics of mycelium growth, СО2 gas exchange and competitiveness of Daedaleopsis confragosa and D. tricolor were analyzed. It has been shown that on agar (MEA) mycelium growth is limited to 5–35°C, and its maximum is observed at 30°C (D. confragosa) – 35°C (D. tricolor). The mycelium СО2 gas exchange at MEA is recorded in the range of 5–50°C, with a maximum for D. confragosa at 35°C and 45°C for D. tricolor. The temperature dynamics of CO2 gas exchange in wood destroyed by D. confragosa and D. tricolor does not fundamentally differ from that of dikaryotic mycelium on MEA: recorded in the same temperature range (5–50°C), the temperature maximum is higher in D. tricolor (40)°C than in D. confragosa (30°C). According to the temperature characteristics of mycelium growth and СО2 gas exchange D. confragosa and D. tricolor can be characterized as mesophilic fungi, but differ in pronounced ecological individuality in relation to low and high temperatures. D. confragosa is characterized by more intensive growth and СО2 gas exchange of mycelium at 5–10°C, and D. tricolor at 35–50°C, which determines the temperature dynamics of their competitiveness: higher in D. confragosa at low, and in D. tricolor – at high temperatures. This corresponds to their geographical distribution: the first one is found in all latitudinal parts of the forest zone, and the second one is absent in its northern part, but common in the southern. According to the geographical and ecological-physiological features, D. tricolor can apparently be considered as the southern subspecies of D. confragosa s.l.

Sobre autores

V. Mukhin

Institute of Plant and Animal Ecology of Ural Branch of Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Eltsin

Autor responsável pela correspondência
Email: victor.mukhin@ipae.uran.ru
Russia, Ekaterinburg; Russia, Ekaterinburg

V. Vladykina

Ural Federal University named after the first President of Russia B.N. Eltsin

Autor responsável pela correspondência
Email: viktoria.yambusheva@urfu.ru
Russia, Ekaterinburg

D. Diyarova

Institute of Plant and Animal Ecology of Ural Branch of Russian Academy of Sciences

Autor responsável pela correspondência
Email: dasha_d@ipae.uran.ru
Russia, Ekaterinburg

Bibliografia

  1. Bondartseva M.A. Definitorium fungorum Rossiae. Ordo Aphyllophorales. Fasc. 2. Familiae Albatrellaceae, Aporpiaceae, Boletopsidaceae, Bondarzewiaceae, Corticiaceae (genera tubuliferae), Fistulinaceae, Ganodermataceae, Lachnocladiaceae (genus tubiliferus), Phaeolaceae, Polyporaceae (genera tubuliferae), Poriaceae, Rigidoporaceae. Nauka, SPb., 1998 (in Russ.).
  2. Chandrawanshi N.K., Tandia D.K., Jadhav S.K. Determination of antioxidant and antidiabetic activities of polar solvent extracts of Daedaleopsis confragosa (Bolton) J. Schröt. Res. J. Pharmacy Technol. 2018. V. 11 (12). P. 5623–5630. https://doi.org/10.5958/0974-360X.2018.01020.X
  3. Ćilerdžić J., Galić M., Ivanović Ž. et al. Stimulation of wood degradation by Daedaleopsis confragosa and D. tricolor. Appl. Biochem. Biotechnol. 2019. V. 187. P. 1371–1383. https://doi.org/10.1007/s12010-018-2884-2
  4. Dudka I.A., Wasser S.P., Ellanskaya I.A. et al. Methods of experimental mycology. Naukova dumka, Kiev, 1982 (in Russ.).
  5. Farr D.F., Bills G.F., Chamuris G.P. et al. Fungi on plants and plant products in the United States. The American Phytopathological Society (APS) Press, St. Paul, Minnesota, 1989.
  6. Galović V., Marković M., Pap P. et al. Molecular taxonomy and phylogenetics of Daedaleopsis confragosa. Genetika. 2018. V 50 (2). P. 519–532.https://doi.org/10.2298/GENSR1802519G
  7. GBIF Secretariat. GBIF Backbone Taxonomy. Checklist dataset, 2021. https://doi.org/10.15468/39omei. Accessed 25.07.2021.
  8. Gilbertson R.L., Ryvarden L. North American polypores, V. 1: Abortiporus – Lindtneria. Fungiflora, Oslo, 1986.
  9. Index Fungorum. CABI database, 2022. http://www.indexfungorum.org. Accessed 25.07.2022.
  10. Kirk P.M., Cannon P.F., Minter D.W. et al. Dictionary of Fungi. Tenth edition. CABI, 2008.
  11. Kotlaba F., Pouzar Z., Kout J. Locations of the very rare tricolor reticulate – Daedaleopsis tricolor in the Czech Republic. Mykologické Listy. 2010. № 113. P. 20–22.
  12. Koukol O., Kotlaba F., Pouzar Z. Taxonomic evaluation of the polypore Daedaleopsis tricolor based on morphology and molecular data. Czech Mycol. 2014. V. 66. P. 107–119. https://doi.org/10.33585/cmy.66201
  13. Lebedev L.R., Teplyakova T.V., Vyazovaya E.A. et al. Method for Obtaining Daedaleopsis confragosa K-1326 Extracts with Antitumor Activity. Biotechnology. 2019. V. 35 (1). P. 68–72 (in Russ.).
  14. Markoviħ M., Orlović S., Pap P. et al. Influence of temperature on the mycelium growth of Daedaleopsis confragosa (Bolt.: Fr.) J. Schröt. Topola. 2013. № 191/192. P. 31–41.
  15. Markoviħ M., Pap P., Drekić M. et al. Ferment activity of Daedaleopsis confragosa (Bolt.: Fr.) J. Schröt. fungus. Topola. 2015. № 195/196. P. 107–115.
  16. Mayr E. Populations, species and evolution. Mir, Moscow, 1974 (in Russ.).
  17. Mentrida S., Krisai-Greilhuber I., Voglmayr H. Molecular evaluation of species delimitation and barcoding of Daedaleopsis confragosa specimens in Austria. Österreichische Zeitschr. Pilzkund. 2015. V. 24. P. 173–179.
  18. Mukhin V.A., Zhuykova E.V., Vladykina V.D. et al. Notes on medicinal polypore species from the genus Daedaleopsis (Agaricomycetes), distributed in the Asian part of Russia. Int. J. Medicinal Mushrooms. 2020. V. 22 (8). P. 775 – 780. https://doi.org/10.1615/IntJMedMushrooms.2020035417
  19. Piątek M. New discovery of Daedaleopsis tricolor (Fungi, Poriales) and a review of its distribution in Poland. Polish Bot. J. 2001. V. 46 (2). P. 277–279.
  20. Ryvarden L., Gilbertson R.L. European polypores. V. 6. P. 1: Abortiporus – Lindneria. Fungiflora, Oslo, 1993.
  21. Stajić M., Ćilerdžić J., Galić M. et al. Lignocellulose degradation by Daedaleopsis confragosa and D. tricolor. BioResources. 2017. V. 12 (4). P. 7195–7204. https://doi.org/10.15376/biores.12.4.7195-7204
  22. Tselniker Yu.L., Malkina I.S., Kovalev A.G. et al. The growth and CO2 gaseous exchange in forest trees. Nauka, Eka-terinburg, 1993 (in Russ.).
  23. Vidović S., Zeković Z., Mujić I. et al. The antioxidant properties of polypore mushroom Daedaleopsis confragosa. Cent. Eur. J. Biol. 2011. V. 6 (4). P. 575–582. https://doi.org/10.2478/s11535-011-0029-5
  24. Vladykina V.D., Mukhin V.A., Badalyan S.M. Daedaleopsis genus in Siberia and the Far East of Russia. In: Information technology in biodiversity research: Proceedings of III Russian National conference. Ekaterinburg, 2020, pp. 17–26.
  25. Zhao J.-Y., Ding J.-H., Li Z.-H. et al. Two new compounds from cultures of the basidiomycete Daedaleopsis tricolor. J. Asian Natural Products Res. 2020. V. 22 (10). P. 941–946. https://doi.org/10.1080/10286020.2019.1668377
  26. Бондарцева М.А. (Bondartseva) Определитель грибов России. Порядок Aфиллофоровые. Вып. 2. СПб.: Наука, 1998. 391 с.
  27. Дудка И.А., Вассер С.П., Элланская И.А. и др. (Dudka et al.) Методы экспериментальной микологии. Киев: Наукова думка, 1982. 552 с.
  28. Майр Э. (Mayr) Популяции, виды и эволюция. М.: Мир, 1974. 464 с.
  29. Цельникер Ю.Л., Малкина И.С., Ковалев А.Г. и др. (Tselniker et al.) Рост и газообмен СО2 у лесных деревьев. М.: Наука, 1993. 256 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (598KB)
3.

Baixar (860KB)

Declaração de direitos autorais © В.А. Мухин, В.Д. Владыкина, Д.К. Диярова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies