RESPONSES OF BARLEY OF TWO GENOTYPES TO Fusarium culmorum INFECTION
- Authors: Lebedinskii M.I.1, Shakhnazarova V.Y.1, Vishnevskaya N.A.1, Borodina E.V.1, Shaposhnikov A.I.1, Strunnikova O.K.1
-
Affiliations:
- All-Russia Research Institute for Agricultural Microbiology
- Issue: Vol 59, No 5 (2025)
- Pages: 427-442
- Section: PHYTOPATHOGENIC FUNGI
- URL: https://journals.rcsi.science/0026-3648/article/view/315715
- DOI: https://doi.org/10.31857/S0026364825050083
- EDN: https://elibrary.ru/btfewq
- ID: 315715
Cite item
Abstract
About the authors
M. I. Lebedinskii
All-Russia Research Institute for Agricultural Microbiology
Email: lebedin21@bk.ru
196608 St. Petersburg, Russia
V. Y. Shakhnazarova
All-Russia Research Institute for Agricultural Microbiology
Email: shahnazarova-v@mail.ru
196608 St. Petersburg, Russia
N. A. Vishnevskaya
All-Russia Research Institute for Agricultural Microbiology
Email: navishnevskaya@rambler.ru
196608 St. Petersburg, Russia
E. V. Borodina
All-Russia Research Institute for Agricultural Microbiology
Email: borodina_e@inbox.ru
196608 St. Petersburg, Russia
A. I. Shaposhnikov
All-Russia Research Institute for Agricultural Microbiology
Email: ai-shaposhnikov@mail.ru
196608 St. Petersburg, Russia
O. K. Strunnikova
All-Russia Research Institute for Agricultural Microbiology
Email: olgastrunnikova@rambbler.ru
196608 St. Petersburg, Russia
References
- Antonissen G., Martel A., Pasmans F. et al. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins. 2014. V. 6. P. 430–452. https://doi.org/10.3390/toxins6020430
- Backer R., Naidoo S., van den Berg N. The nonexpressor of pathogenesis-related genes 1 (NPR1) and related family: mechanistic insights in plant disease resistance. Front. Plant Sci. 2019. V. 10. P. 102. https://doi.org/10.3389/fpls.2019.00102
- Beccari G., Covarelli L., Nicholson P. Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathol. 2011. V. 60. P. 671–684. https://doi.org/10.1111/j.1365–3059. 2011.02425.x
- Bertini L., Caporale C., Testa M. et al. Structural basis of the antifungal activity of wheat PR4proteins. FEBS Lett. 2009. V. 583. P. 2865–2871. https://doi.org/10.1016/j.febslet.2009.07.045
- Caporale C., Di Berardino I., Leonardi L. et al. Wheat pathogenesis-related proteins of class 4 have ribonuclease activity. FEBS Lett. 2004. V. 575. P. 71–76. https://doi.org/10.1016/j.febslet.2004.07.091
- Caruso C., Caporale C., Chilosi G. et al. Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. J. Protein Chem. 1996. V. 15 (1). P. 35–44. https://doi.org/10.1007/BF01886809
- Cass C.L., Peraldi A., Dowd P.F. et al. Effects of phenylalanine ammonia lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J. Exp. Bot. 2015. V. 66. P. 4317–4335. https://doi.org/10.1093/jxb/erv269
- Chiquito-Contreras C.J., Meza-Menchaca T., Guzmán-López O. et al. Molecular insights into plant – microbe interactions: a comprehensive review of key mechanisms. Front. Biosci. Elite. 2024. V. 16 (1). P. 9. https://doi.org/10.31083/j.fbe1601009
- Chowdhary A.A., Mishra S., Mehrotra S. et al. Plant transcription factors: an overview of their role in plant life. In: V. Srivastava etc. (eds). Plant transcription factors. Cambridge, Academic Press, 2023, pp. 3–20.
- Covarelli L., Beccari G., Steed A. et al. Colonization of soft wheat following infection of the stem base by Fusarium culmorum and translocation of deoxynivalenol to the head. Plant Pathol. 2012. V. 1. P. 1121–1129. https://doi.org/10.1111/j.1365-3059.2012.02600.x
- Ding L., Xu H., Yi H. et al. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLOS ONE. 2011. V. 6 (4). e19008. https://doi.org/10.1371/journal.pone.0019008
- Dinolfo M.I., Martínez M., Castanares E. et al. Interaction of methyl-jasmonate and Fusarium poae in bread wheat. Fungal Biol. 2022. V. 126 (11–12). P. 786–792. https://doi.org/10.1016/j.funbio.2022.10.002
- Dixon R.A., Lahoucine A., Parvathi K. et al. The phenylpropanoid pathway and plant defence – a genomics perspective. Mol. Plant Pathol. 2002. V. 3. P. 371–390. https://doi.org/10.1046/j.1364-3703.2002.00131.x
- Durrant W.E., Dong X. Systemic acquired resistance. Ann. Rev. Phytopathol. 2004. V. 42. P. 185–209. https://doi.org/ 10.1146/annurev.phyto.42.040803.140421
- Guan Y., Meng X., Khanna R. et al. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLOS Genet. 2014. V. 10 (5). e1004384. https://doi.org/10.1371/journal.pgen.1004384
- Hollaway G.J., Evans M.L., Wallwork H. et al. Yield loss in cereals, caused by Fusarium culmorum and F. pseudograminearum, is related to fungal DNA in soil prior to planting, rainfall, and cereal type. Plant Disease. 2013. V. 97. P. 977982. https://doi.org/10.1094/PDIS-09-12-0867
- Johonson J.F., Allan D.H., Vance C.P. et al. Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Contribution to organic acid exudation by proteoid roots. Plant. Physiol. 1996. V. 112. P. 19–30.
- Jones D.L., Darrah P.R. Influx and efflux of amino acids from Zea mays L. roots and their for implications N nutrition and the rhizosphere. Plant Soil. 1993. V. 155/156. P. 87–90.
- Jones D.L., Darrah P.R. Re-sorbtion of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. Plant Soil. 1996. V. 178. P. 153–160. https://doi.org/10.1007/BF00011173
- Kumar N., Galli M., Dempsey D. NPR1 is required for root colonization and the establishment of a mutualistic symbiosis between the beneficial bacterium Rhizobium radiobacter and barley. Environ. Microbiol. 2021. V. 23 (4). P. 2102–2115. https://doi.org/10.1111/1462-2920.15356
- Lee S.J., Rose J.K.C. Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal Behav. 2010. V. 5. P. 769–772. https://doi.org/10.4161/psb.5.6.11778
- Leppyanen I.V., Shakhnazarova V. Yu., Vishnevskaya N.A. et al. Study of mechanisms of interactions between Pisum sativum and two strains of Fusarium culmorum with a different aggressiveness. Mikologiya i fitopatologiya. 2017. V. 51 (4). P. 241–248. (In Russ.).
- Motallebi P., Niknam V., Ebrahimzadeh H. et al. Methyl jasmonate strengthens wheat plants against root and crown rot pathogen Fusarium culmorum infection. J. Plant Growth Regul. 2015. V. 34 (3). P. 624–636. https://doi.org/ 10.1007/s00344-015-9496-7
- Motallebi P., Tonti S., Niknam V. et al. Induction of basal resistance by methyl jasmonate against Fusarium culmorum in bread wheat. Cereal Res. Commun. 2017. V. 45 (2). P. 248–259. https://doi.org/10.1556/0806.45.2017.008
- Pandey S.P., Somssich I.E. The role of WRKY transcription factors in plant immunity. Plant Physiol. 2009. V. 150. P. 1648–1655. https://doi.org/10.1104/pp.109.138990
- Pecoraro F., Giannini M., Beccari G. et al. Comparative studies about fungal colonization anddeoxynivalenol translocation in barley plants inoculated at the base with Fusa- rium graminearum, Fusarium culmorum and Fusarium pseudograminearum. AFSci. 2018. V. 27 (1). P. 74–83. https://doi.org/10.23986/afsci.67704
- Pereira L.B., Thomazella D.P.T., Teixeira P.J.P.L. Plant-microbiome crosstalk and disease development. Current Opin. Plant Biol. 2023. V. 72. 102351 https://doi.org/10.1016/j.pbi.2023.102351
- Qi P.F., Balcerzak M., Rocheleau H. et al. Jasmonic acid and abscisic acid play important roles in host-pathogen interaction between Fusarium graminearum and wheat during the early stages of Fusarium head blight. Physiol. Mol. Plant Pathol. 2016. V. 93. P. 39–48. https://doi.org/10.1016/j.pmpp.2015.12.004
- Scherm B., Balmas V., Spanu F. et al. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 2013. V. 14. P. 323–341. https://doi.org/10.1111/mpp.12011
- Schilling A.G., Moller E.M., Geiger H.H. Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology. 1996. V. 86. P. 515–522.
- Shakhnazarova V., Feoktistova A., Chizhevskaya E. et al. Optimization of DNA exstraction for Fusarium culmorum identification and quantification in barley and wheat roots with PCR. Mikologiya i fitopatilogiya. 2012. V. 46 (4). P. 287– 292. (In Russ.).
- Shaposhnikov A.I., Shakhnazarova V. Yu., Vishnevskaya N.A. et al. Root exudation of barley with different resistance to root rot caused by Fusarium culmorum. Russ. J. Plant Physiol. 2023. V. 70. P. 212. https://doi.org/10.1134/S1021443723603506
- Smiley R.W., Gourlie J.A., Easley S.A. et al. Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Disease. 2005. V. 89. P. 595–604. https://doi.org/10.1094/PD-89-0595
- Sudisha J., Sharathchandra R.G., Amruthesh K.N. et al. Pathogenesis related proteins in plant defense response. In: J.M. Merillon, K.G. Ramawat (eds). Plant defence: biological control, progress in biological control. Springer, 2012, pp. 379–403.
- Toruño T.Y., Stergiopoulos I., Coaker G. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Ann. Rev. Phytopathol. 2016. V. 54. P. 419–441. https://doi.org/ 10.1146/annurev-phyto-080615-100204
- Tufan F., Uçarl C., Tunal B. et al. Analysis of early events in barley (Hordeum vulgare L.) roots in response to Fusarium culmorum infection. Eur. J. Plant Pathol. 2017. V. 148. P. 343–355. https://doi.org/10.1007/s10658-016-1087-3
- Uluhan E., Keleş E.N., Tufan F. Analysis of WRKY transcription factors in barley cultivars infected with Fusarium culmorum. Int. J. Life Sci. Biotechnol. 2019. V. 2 (3). P. 165–174. https://doi.org/10.38001/ijlsb.588730
- van Loon L.C., Rep M., Pieterse C.M.J. Significance of inducible defense-related proteins in infected plants. Ann. Rev. Phytopathol. 2006. V. 44. P. 135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
- Villafana R.T., Ramdass A.C., Rampersad S.N. Selection of Fusarium trichothecene toxin genes for molecular detection depends on TRI gene cluster organization and gene function. Toxins. 2019. V. 11. P. 36. https://doi.org/10.3390/toxins11010036
- Vleeshouwers V.G., Oliver R.P. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol. Plant Microbe Interact. 2014. V. 27 (3). P. 196–206. https://doi.org/10.1094/MPMI-10-13-0313-IA
- Wagacha J.M., Oerke E.C., Dehne H.W. et al. Colonization of wheat seedling leaves by Fusarium species as observed in growth chambers: a role as inoculum for head blight infection? Fungal Ecol. 2012. V. 5. P. 581–590. https://doi.org/10.1016/j.funeco.2012.02.002
- Wang R., Wang G.L., Ning Y. PALs: emerging key players in broad-spectrum disease resistance. Trends Plant Sci. 2019.V. 24(9). P. 785–787. https://doi.org/ 10.1016/j.tplants.2019.06.012.
- Wang X., Bi W., Gao J. et al. Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley. J. Integr. Agric. 2018. V. 17 (11). P. 2468–2477. https://doi.org/10.1016/S2095-3119(17)61852-5
- Wani S.H., Anand S., Singh B. et al. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep. 2021. V. 40. P. 1071–1085. https://doi.org/10.1007/s00299-021-02691-8
- Yu G., Zhang X., Yao J., et al. Resistance against Fusarium head blight in transgenic wheat plants expressing the ScNPR1 gene. J. Phytopathol. 2017. V. 165. P. 223–231. https://doi.org/10.1111/jph.12553
- Zheng Z., Qamar S., Chen Z., et al. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 2006. V. 48. P. 592–1197. https://doi.org/10.1111/j.1365-313X.2006.02901.x
- Zribi I., Ghorbel M., Jrad O. et al. The wheat pathogenesis – related protein (TdPR1.2) enhanced tolerance to abiotic and biotic stresses in transgenic Arabidopsis plants. Protoplasma. 2024. V. 261. P. 1035–1049. https://doi.org/ 10.1007/s00709-024-01955-w
- Леппянен И.В., Шахназарова В.Ю., Вишневская Н.А. и др. (Leppyanen et al.) Изучение механизмов взаимоотношений гороха Pisum sativum и двух штаммов Fusarium culmorum разной агрессивности // Микология и фитопатология. 2017. Т. 51. № 5. С. 241–248.
- Шахназарова В.Ю., Феоктистова А.С., Чижевская Е.П. и др. (Shakhnazarova et al.) Оптимизация способа выделения ДНК для идентификации и количественного определения Fusarium culmorum в корнях ячменя и пшеницы методом ПЦР // Микология и фитопатология. 2012. Т. 46. № 4. С. 287–292.
Supplementary files
