RESPONSES OF BARLEY OF TWO GENOTYPES TO Fusarium culmorum INFECTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fusarium culmorum is a hemibiotrophic phytopathogenic fungus that causes Fusarium head blight, Fusarium root rot and Fusarium crown rot of barley and wheat. These diseases result in reductions in yield as well as in grain contamination with mycotoxins which are dangerous to human and animal health. In this work, the early stages of the interactions between F. culmorum and barley with different resistance to root rot were studied. Barley responses were assessed by the intensity of expression of the genes PR1, PR4, LOX, PAL, NPR1, WRKY33, WRKY34 associated with pathogenesis. The state of F. culmorum in barley roots was determined by the amount of its DNA and the intensity of expression of the TRI13 gene encoding the production of trichothecene toxins by the fungus. As a result, differences in the responses of barley of two genotypes to F. culmorum colonization were established. In medium-resistant barley, in response to the pathogen attack, the PR1, PR4, and LOX genes were induced earlier than in susceptible barley. In medium-resistant barley, the expression of protective genes was increased more often than in susceptible barley compared to the control. An increase in the amount of F. culmorum DNA and the level of toxins produced by it was accompanied by suppression of the expression of the PR4, PAL, WRKY33, and WRKY34 genes in susceptible barley. In medium-resistant barley during this period, there was no suppression of protective genes; on the contrary, compared with the control, the expression of the PR1, PR4, LOX, PAL, and NPR1 genes was increased. The involvement of the studied genes in the interactions between barley of two genotypes and F. culmorum has been determined. The results obtained expand the knowledge about the molecular interactions between the parasite and the host plant in the barley – Fusarium culmorum pathosystem.

About the authors

M. I. Lebedinskii

All-Russia Research Institute for Agricultural Microbiology

Email: lebedin21@bk.ru
196608 St. Petersburg, Russia

V. Y. Shakhnazarova

All-Russia Research Institute for Agricultural Microbiology

Email: shahnazarova-v@mail.ru
196608 St. Petersburg, Russia

N. A. Vishnevskaya

All-Russia Research Institute for Agricultural Microbiology

Email: navishnevskaya@rambler.ru
196608 St. Petersburg, Russia

E. V. Borodina

All-Russia Research Institute for Agricultural Microbiology

Email: borodina_e@inbox.ru
196608 St. Petersburg, Russia

A. I. Shaposhnikov

All-Russia Research Institute for Agricultural Microbiology

Email: ai-shaposhnikov@mail.ru
196608 St. Petersburg, Russia

O. K. Strunnikova

All-Russia Research Institute for Agricultural Microbiology

Email: olgastrunnikova@rambbler.ru
196608 St. Petersburg, Russia

References

  1. Antonissen G., Martel A., Pasmans F. et al. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins. 2014. V. 6. P. 430–452. https://doi.org/10.3390/toxins6020430
  2. Backer R., Naidoo S., van den Berg N. The nonexpressor of pathogenesis-related genes 1 (NPR1) and related family: mechanistic insights in plant disease resistance. Front. Plant Sci. 2019. V. 10. P. 102. https://doi.org/10.3389/fpls.2019.00102
  3. Beccari G., Covarelli L., Nicholson P. Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathol. 2011. V. 60. P. 671–684. https://doi.org/10.1111/j.1365–3059. 2011.02425.x
  4. Bertini L., Caporale C., Testa M. et al. Structural basis of the antifungal activity of wheat PR4proteins. FEBS Lett. 2009. V. 583. P. 2865–2871. https://doi.org/10.1016/j.febslet.2009.07.045
  5. Caporale C., Di Berardino I., Leonardi L. et al. Wheat pathogenesis-related proteins of class 4 have ribonuclease activity. FEBS Lett. 2004. V. 575. P. 71–76. https://doi.org/10.1016/j.febslet.2004.07.091
  6. Caruso C., Caporale C., Chilosi G. et al. Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. J. Protein Chem. 1996. V. 15 (1). P. 35–44. https://doi.org/10.1007/BF01886809
  7. Cass C.L., Peraldi A., Dowd P.F. et al. Effects of phenylalanine ammonia lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J. Exp. Bot. 2015. V. 66. P. 4317–4335. https://doi.org/10.1093/jxb/erv269
  8. Chiquito-Contreras C.J., Meza-Menchaca T., Guzmán-López O. et al. Molecular insights into plant – microbe interactions: a comprehensive review of key mechanisms. Front. Biosci. Elite. 2024. V. 16 (1). P. 9. https://doi.org/10.31083/j.fbe1601009
  9. Chowdhary A.A., Mishra S., Mehrotra S. et al. Plant transcription factors: an overview of their role in plant life. In: V. Srivastava etc. (eds). Plant transcription factors. Cambridge, Academic Press, 2023, pp. 3–20.
  10. Covarelli L., Beccari G., Steed A. et al. Colonization of soft wheat following infection of the stem base by Fusarium culmorum and translocation of deoxynivalenol to the head. Plant Pathol. 2012. V. 1. P. 1121–1129. https://doi.org/10.1111/j.1365-3059.2012.02600.x
  11. Ding L., Xu H., Yi H. et al. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLOS ONE. 2011. V. 6 (4). e19008. https://doi.org/10.1371/journal.pone.0019008
  12. Dinolfo M.I., Martínez M., Castanares E. et al. Interaction of methyl-jasmonate and Fusarium poae in bread wheat. Fungal Biol. 2022. V. 126 (11–12). P. 786–792. https://doi.org/10.1016/j.funbio.2022.10.002
  13. Dixon R.A., Lahoucine A., Parvathi K. et al. The phenylpropanoid pathway and plant defence – a genomics perspective. Mol. Plant Pathol. 2002. V. 3. P. 371–390. https://doi.org/10.1046/j.1364-3703.2002.00131.x
  14. Durrant W.E., Dong X. Systemic acquired resistance. Ann. Rev. Phytopathol. 2004. V. 42. P. 185–209. https://doi.org/ 10.1146/annurev.phyto.42.040803.140421
  15. Guan Y., Meng X., Khanna R. et al. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLOS Genet. 2014. V. 10 (5). e1004384. https://doi.org/10.1371/journal.pgen.1004384
  16. Hollaway G.J., Evans M.L., Wallwork H. et al. Yield loss in cereals, caused by Fusarium culmorum and F. pseudograminearum, is related to fungal DNA in soil prior to planting, rainfall, and cereal type. Plant Disease. 2013. V. 97. P. 977982. https://doi.org/10.1094/PDIS-09-12-0867
  17. Johonson J.F., Allan D.H., Vance C.P. et al. Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Contribution to organic acid exudation by proteoid roots. Plant. Physiol. 1996. V. 112. P. 19–30.
  18. Jones D.L., Darrah P.R. Influx and efflux of amino acids from Zea mays L. roots and their for implications N nutrition and the rhizosphere. Plant Soil. 1993. V. 155/156. P. 87–90.
  19. Jones D.L., Darrah P.R. Re-sorbtion of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. Plant Soil. 1996. V. 178. P. 153–160. https://doi.org/10.1007/BF00011173
  20. Kumar N., Galli M., Dempsey D. NPR1 is required for root colonization and the establishment of a mutualistic symbiosis between the beneficial bacterium Rhizobium radiobacter and barley. Environ. Microbiol. 2021. V. 23 (4). P. 2102–2115. https://doi.org/10.1111/1462-2920.15356
  21. Lee S.J., Rose J.K.C. Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal Behav. 2010. V. 5. P. 769–772. https://doi.org/10.4161/psb.5.6.11778
  22. Leppyanen I.V., Shakhnazarova V. Yu., Vishnevskaya N.A. et al. Study of mechanisms of interactions between Pisum sativum and two strains of Fusarium culmorum with a different aggressiveness. Mikologiya i fitopatologiya. 2017. V. 51 (4). P. 241–248. (In Russ.).
  23. Motallebi P., Niknam V., Ebrahimzadeh H. et al. Methyl jasmonate strengthens wheat plants against root and crown rot pathogen Fusarium culmorum infection. J. Plant Growth Regul. 2015. V. 34 (3). P. 624–636. https://doi.org/ 10.1007/s00344-015-9496-7
  24. Motallebi P., Tonti S., Niknam V. et al. Induction of basal resistance by methyl jasmonate against Fusarium culmorum in bread wheat. Cereal Res. Commun. 2017. V. 45 (2). P. 248–259. https://doi.org/10.1556/0806.45.2017.008
  25. Pandey S.P., Somssich I.E. The role of WRKY transcription factors in plant immunity. Plant Physiol. 2009. V. 150. P. 1648–1655. https://doi.org/10.1104/pp.109.138990
  26. Pecoraro F., Giannini M., Beccari G. et al. Comparative studies about fungal colonization anddeoxynivalenol translocation in barley plants inoculated at the base with Fusa- rium graminearum, Fusarium culmorum and Fusarium pseudograminearum. AFSci. 2018. V. 27 (1). P. 74–83. https://doi.org/10.23986/afsci.67704
  27. Pereira L.B., Thomazella D.P.T., Teixeira P.J.P.L. Plant-microbiome crosstalk and disease development. Current Opin. Plant Biol. 2023. V. 72. 102351 https://doi.org/10.1016/j.pbi.2023.102351
  28. Qi P.F., Balcerzak M., Rocheleau H. et al. Jasmonic acid and abscisic acid play important roles in host-pathogen interaction between Fusarium graminearum and wheat during the early stages of Fusarium head blight. Physiol. Mol. Plant Pathol. 2016. V. 93. P. 39–48. https://doi.org/10.1016/j.pmpp.2015.12.004
  29. Scherm B., Balmas V., Spanu F. et al. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 2013. V. 14. P. 323–341. https://doi.org/10.1111/mpp.12011
  30. Schilling A.G., Moller E.M., Geiger H.H. Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology. 1996. V. 86. P. 515–522.
  31. Shakhnazarova V., Feoktistova A., Chizhevskaya E. et al. Optimization of DNA exstraction for Fusarium culmorum identification and quantification in barley and wheat roots with PCR. Mikologiya i fitopatilogiya. 2012. V. 46 (4). P. 287– 292. (In Russ.).
  32. Shaposhnikov A.I., Shakhnazarova V. Yu., Vishnevskaya N.A. et al. Root exudation of barley with different resistance to root rot caused by Fusarium culmorum. Russ. J. Plant Physiol. 2023. V. 70. P. 212. https://doi.org/10.1134/S1021443723603506
  33. Smiley R.W., Gourlie J.A., Easley S.A. et al. Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Disease. 2005. V. 89. P. 595–604. https://doi.org/10.1094/PD-89-0595
  34. Sudisha J., Sharathchandra R.G., Amruthesh K.N. et al. Pathogenesis related proteins in plant defense response. In: J.M. Merillon, K.G. Ramawat (eds). Plant defence: biological control, progress in biological control. Springer, 2012, pp. 379–403.
  35. Toruño T.Y., Stergiopoulos I., Coaker G. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Ann. Rev. Phytopathol. 2016. V. 54. P. 419–441. https://doi.org/ 10.1146/annurev-phyto-080615-100204
  36. Tufan F., Uçarl C., Tunal B. et al. Analysis of early events in barley (Hordeum vulgare L.) roots in response to Fusarium culmorum infection. Eur. J. Plant Pathol. 2017. V. 148. P. 343–355. https://doi.org/10.1007/s10658-016-1087-3
  37. Uluhan E., Keleş E.N., Tufan F. Analysis of WRKY transcription factors in barley cultivars infected with Fusarium culmorum. Int. J. Life Sci. Biotechnol. 2019. V. 2 (3). P. 165–174. https://doi.org/10.38001/ijlsb.588730
  38. van Loon L.C., Rep M., Pieterse C.M.J. Significance of inducible defense-related proteins in infected plants. Ann. Rev. Phytopathol. 2006. V. 44. P. 135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  39. Villafana R.T., Ramdass A.C., Rampersad S.N. Selection of Fusarium trichothecene toxin genes for molecular detection depends on TRI gene cluster organization and gene function. Toxins. 2019. V. 11. P. 36. https://doi.org/10.3390/toxins11010036
  40. Vleeshouwers V.G., Oliver R.P. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol. Plant Microbe Interact. 2014. V. 27 (3). P. 196–206. https://doi.org/10.1094/MPMI-10-13-0313-IA
  41. Wagacha J.M., Oerke E.C., Dehne H.W. et al. Colonization of wheat seedling leaves by Fusarium species as observed in growth chambers: a role as inoculum for head blight infection? Fungal Ecol. 2012. V. 5. P. 581–590. https://doi.org/10.1016/j.funeco.2012.02.002
  42. Wang R., Wang G.L., Ning Y. PALs: emerging key players in broad-spectrum disease resistance. Trends Plant Sci. 2019.V. 24(9). P. 785–787. https://doi.org/ 10.1016/j.tplants.2019.06.012.
  43. Wang X., Bi W., Gao J. et al. Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley. J. Integr. Agric. 2018. V. 17 (11). P. 2468–2477. https://doi.org/10.1016/S2095-3119(17)61852-5
  44. Wani S.H., Anand S., Singh B. et al. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep. 2021. V. 40. P. 1071–1085. https://doi.org/10.1007/s00299-021-02691-8
  45. Yu G., Zhang X., Yao J., et al. Resistance against Fusarium head blight in transgenic wheat plants expressing the ScNPR1 gene. J. Phytopathol. 2017. V. 165. P. 223–231. https://doi.org/10.1111/jph.12553
  46. Zheng Z., Qamar S., Chen Z., et al. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 2006. V. 48. P. 592–1197. https://doi.org/10.1111/j.1365-313X.2006.02901.x
  47. Zribi I., Ghorbel M., Jrad O. et al. The wheat pathogenesis – related protein (TdPR1.2) enhanced tolerance to abiotic and biotic stresses in transgenic Arabidopsis plants. Protoplasma. 2024. V. 261. P. 1035–1049. https://doi.org/ 10.1007/s00709-024-01955-w
  48. Леппянен И.В., Шахназарова В.Ю., Вишневская Н.А. и др. (Leppyanen et al.) Изучение механизмов взаимоотношений гороха Pisum sativum и двух штаммов Fusarium culmorum разной агрессивности // Микология и фитопатология. 2017. Т. 51. № 5. С. 241–248.
  49. Шахназарова В.Ю., Феоктистова А.С., Чижевская Е.П. и др. (Shakhnazarova et al.) Оптимизация способа выделения ДНК для идентификации и количественного определения Fusarium culmorum в корнях ячменя и пшеницы методом ПЦР // Микология и фитопатология. 2012. Т. 46. № 4. С. 287–292.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».