Phoma-like fungi associated with Convolvulaceae plants
- 作者: Gomzhina M.M.1, Gasich E.L.1
-
隶属关系:
- All-Russian Institute of Plant Protection
- 期: 卷 59, 编号 2 (2025)
- 页面: 120-153
- 栏目: PHYTOPATHOGENIC FUNGI
- URL: https://journals.rcsi.science/0026-3648/article/view/288862
- DOI: https://doi.org/10.31857/S0026364825020033
- EDN: https://elibrary.ru/sqpdup
- ID: 288862
如何引用文章
详细
Phoma-like fungi is an extensive, non-taxonomic group of anamorphic ascomycetes, currently incorporating all micromycetes that were previously consumed as species of the genus Phoma. Didymellaceae is one of the largest families in the Pleosporales with a unique and underestimated biodiversity, encompassing main genera of Phoma-like fungi, namely Ascochyta, Didymella, Stagonosporopsis, etc. Several Convolvulaceae wild plants are widespread and one of the most harmful weeds, successful in many types of climates, are an exceptional source of biodiversity of Didymellaceae fungi. Phytosanitary examination of industrial fields, natural and ruderal areas has been carried out by authors from 1990 to the present. Leaves of Convolvulaceae plants (Calystegia inflata, Calystegia sepium, Calystegia sp., Convolvulus arvensis, Ipomoea purpurea) with symptoms of fungal etiology, namely leaf spots were collected in in different locations in Russia and neighboring countries (Kazakhstan, Kyrgyzstan). As a result of monitoring, a rich collection of fungal Phoma-like strains (at least 200) has been created and maintained. The aim of this study was to identify 28 Didymellaceae spp. strains isolated from Convolvulaceae plants according to the consolidated species concept (CSC) by their phylogenetic, micromorphological, and cultural features. Multilocus phylogenetic analysis inferred from nucleotide sequences of the internal transcribed spacer (ITS) and large subunit (28S) of ribosomal DNA, partial DNA-directed RNA polymerase II subunit (rpb2), and β-tubulin (tub2) genes revealed well-supported monophyletic clades corresponding to 18 Didymellaceae species. Among them: Ascochyta erotica, Didymella americana, D. bellidis, D. glomerata, D. macrostoma, D. pomorum, D. pseudomacrophylla, D. segeticola, D. sinensis, D. tanaceti, Epicoccum convolvulicola, E. pseudoplurivorum, Nothophoma brennandiae, N. gossypiicola, Phomatodes nebulosa, Stagonosporopsis caricae, S. heliopsidis, and S. inoxydabilis. Plants of the Convolvulaceae family were recorded as substrates for all identified fungal species for the first time. Seven species were revealed in Russia for the first time D. bellidis, D. segeticola, D. sinensis. D. tanaceti, Nothophoma brennandiae, Phomatodes nebulosa, and Stagonosporopsis caricae. Stagonosporopsis heliopsidis for the first time was found in the Kazakhstan. Additionally to detailed phylogenetic data, the manuscript is accompained with a detailed description of the cultural and micromorphological features of all species.
作者简介
M. Gomzhina
All-Russian Institute of Plant Protection
编辑信件的主要联系方式.
Email: gomzhina91@mail.ru
俄罗斯联邦, St. Petersburg
E. Gasich
All-Russian Institute of Plant Protection
Email: elena_gasich@mail.ru
俄罗斯联邦, St. Petersburg
参考
- Ahmadpour S.A., Mehrabi-Koushki M., Farokhinejad R., Asgari B. New species of the family Didymellaceae in Iran. Mycol Prog. 2022. V. 21. P. 28. https://doi.org/10.1007/s11557-022-01800-5
- Aveskamp M.M., de Guyter J., Crous P.W. Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers. 2008. V. 31. P. 1–18.
- Aveskamp M.M., Verkley G.J.M., de Gruyter J. et al. DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia. 2009. V. 101 (3). P. 363–382. https://doi.org/10.3852/08-199
- Aveskamp M.M., de Gruyter J., Woudenberg J.H.C. et al. Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 2010. V. 65. P. 1–60. https://doi.org/10.3114/sim.2010.65.01
- Boerema G.H., Gruyter J., Noordeloos M.E. et al. Phoma identification manual. CABI Publishing, L., 2004.
- Boyle J.S., Lew A.M. An inexpensive alternative to glassmilk for DNA purification. Trends Genet. 1995. V. 11 (1). P. 8. https://doi.org/10.1016/S0168-9525(00)88977-5
- Chen Q., Zhang K., Zhang G.Z. et al. A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China. Phytotaxa. 2015a. V. 197 (4). P. 267–281. https://doi.org/10.11646/phytotaxa.197.4.4
- Chen Q., Jiang J.R., Zhang G.Z. et al. Resolving the Phoma enigma. Stud. Mycol. 2015b. V. 82. P. 137–217. https://doi.org/ 10.1016/j.simyco.2015.10.003
- Chen Q., Hou L.W., Duan W.J. et al. Didymellaceae revisited. Stud. Mycol. 2017. V. 87. P. 105–259. https://doi.org/10.1016/j.simyco.2017.06.002
- Chen T., Wang S., Jiang X., et al. New species of Didymellaceae within aquatic plants from Southwestern China. J. Fungi. 2023. V. 9. P. 761. https://doi.org/10.3390/jof9070761
- Crous P.W., Hawksworth D.L., Wingfield M.J. Identifying and naming plant-pathogenic fungi: past, present, and future. Ann. Rev. Phytopathol. 2015. V. 53. P. 247–267. https://doi.org/10.1146/annurev-phyto-080614-120245
- de Gruyter J., Aveskamp M.M., Woudenberg J.H.C., et al. Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycol. Res. 2009. V. 113. P. 508–519. https://doi.org/10.1016/j.mycres.2009.01.002
- de Gruyter J., Woudenberg J.H.C., Aveskamp M.M., et al. Redisposition of Phoma-like anamorphs in Pleosporales. Stud. Mycol. 2012. V. 75. P. 1–36. https://doi.org/10.3114/sim0004
- Deb D., Khan A., Dey N. Phoma diseases: epidemiology and control. Plant Pathol. 2020. V. 69 (7). P. 1203–1217. https://doi.org/10.1111/ppa.13221
- Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus. 1990. V. 12. P. 13–15. https://doi.org/10.1007/978-3-642-83962-7_18
- Farr D.F., Rossman A.Y. Fungal databases, systematic mycology and microbiology laboratory. 2021. Agricultural research service United States department of agriculture. Accessed 13.08.2024. https://fungi.ars.usda.gov/
- Gannibal Ph.B., Gasich E.L., Berestetskiy A.O. et al. Materials to the study of micromycetes of weeds and wild herbaceous plants in the south of Russian Far East (Primorie and Khabarovsk territories). Mikologiya i fitopatologiya. 2010. V. 44. P. 105–117. (In Russ.) https://doi.org/10.31111/nsnr/2010.44.105
- Gasich E.L., Titova Yu.A. Micromycetes on weeds in Rostov Region. Bulletin of the All-Russian institute of plant protection. 1998. V. 78–79. P. 64–70. (In Russ.)
- Gasich E.L. Mycobiota of field bindweed in the European part of Russia and micromycetes promising for its control. Mikologiya i fitopatologiya. 2001. V. 35(2). P. 1–10. (In Russ.)
- Gasich E.L., Gannibal Ph.B., Berestetskiy A.O. et al. Materials to the study of micromycetes of weeds in the Krasnodar territory and Republic of Adygeya. Novosty sistematiki vysshykh rasteniy. 2011. V. 45. P. 91–100. (In Russ.) https://doi.org/10.31111/nsnr/2011.45.91
- Gasich E.L., Gannibal Ph.B., Berestetskiy A.O. et al. Fungal biodiversity on weeds and wild herbaceous plants in the Pskov region. Plant protection news. 2015. V. 84(2). P. 28–35. (In Russ.)
- Gasich E.L., Gannibal Ph.B., Berestetskiy A.O. et al. Micromycetes of weeds and wild herbaceous plants in the Republic of North Ossetia – Alania. Mikologiya i fitopatologiya. 2016. V. 50(4). P. 257–265. (In Russ.)
- Gasich E.L., Gagkaeva T. Yu., Khlopunova L.B. et al. Micromycetes of weeds and wild herbaceous plants in Smolensk region. Mikologiya i fitopatologiya. 2017. V. 51(5). P. 276– 282. (In Russ.)
- Gomzhina M.M., Gannibal Ph.B. Modern systematics of the genus Phoma sensu lato. Mikologiya i fitopatologiya. 2017. V. 51 (5). P. 268–275. (in Russ.) https://doi.org/10.31857/S0026364821050056
- Gomzhina M.M., Gasich E.L., Khlopunova L.B. et al. New species and new findings of Phoma-like fungi (Didymellaceae) associated with some Asteraceae in Russia. Nova Hedwigia. 2020а. V. 111(1–2). P. 131–149. https://doi.org/10.1127/nova_hedwigia/2020/0586
- Gomzhina M.M., Gasich E.L., Khlopunova L.B. et al. Paraphoma species associated with Convolvulaceae. Mycol. Progress. 2020b. V. 19. P. 185–194. https://doi.org/10.1007/s11557-020-01558-8
- Gomzhina M.M., Gasich E.L., Gagkaeva T. Yu. et al. Biodiversity of fungi inhabiting European blueberry in North-Western Russia and in Finland. Dokl. Biol. Sci. 2022. V. 507. P. 439–453. https://doi.org/10.1134/S0012496622060047
- Gomzhina M.M., Gasich E.L. Plenodomus species infecting oilseed rape in Russia. Plant protection news. 2022. V. 105 (3). P. 135–147. https://doi.org/10.31993/2308-6459-2022-105-3-15425
- Gomzhina M.M., Gasich E.L. Ascochyta erotica sp. nov. pathogenic on Convolvulus arvensis. Diversty. 2024а. V. 16(4). P. 246. https://doi.org/10.3390/d16040246
- Gomzhina M.M., Gasich E.L. Unique findings of Phoma-like fungi associated with soybean. Mikologiya i fitopatologiya. 2024b. V. 58 (2). P. 145–162. (In Russ.) https://doi.org/10.31857/S0026364824020062
- Gomzhina M.M., Gasich E.L. Didymellaceae species associated with Convolvulaceae plants with description of three new species. Mycologia. 2025 (unpubl.).
- Hou L.W., Groenewald J.Z., Pfenning L.H. et al. The Phoma-like dilemma. Stud. Mycol. 2020a. V. 96. P. 309–396. https://doi.org/10.1016/j.simyco.2020.05.001
- Hou L., Hernández-Restrepo M., Groenewald J.Z. et al. Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes). MycoKeys. 2020b. V. 65. P. 49–99. https://doi.org/10.3897/ mycokeys.65.47704
- Keirnan E.C., Tan Y.P., Laurence M.H., et al. Cryptic diversity found in Didymellaceae from Australian native legumes. MycoKeys. 2021. V. 78. P. 1–20. https://doi.org/10.3897/mycokeys.78.60063
- Kularathnage N.D., Senanayake I.C., Wanasinghe D.N., et al. Plant-associated novel didymellaceous taxa in the South China Botanical Garden (Guangzhou, China). J. Fungi. 2023. V. 9. P. 182. https://doi.org/10.3390/jof9020182
- Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999. V. 16. P. 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
- Liu J., Long Z., Xue L., et al. First report of Didymella sinensis causing leaf blight on italian ryegrass in China. Plant Dis. 2023. V. 107 (5). P. 1261–1640. https://doi.org/10.1094/PDIS-08-22-1831-PDN
- Lord E., Leclercq M., Boc A. et al. Armadillo 1.1: An original workflow platform for designing and conducting phylogenetic analysis and simulations. PLOS One. 2012. V. 7 (1). P. e29903. https://doi.org/10.1371/journal.pone.0029903
- Lukina E., Gomzhina M., Dalinova A., et al. Reappraisal of Didymella macrostoma causing white tip disease of Canada thistle as a new species, Didymella baileyae, sp. nov., and bioactivity of its major metabolites. Mycologia. 2024. V. 116(6). P. 877–902. https://doi.org/10.1080/00275514.2024.2367470
- Luo X., Hu Y., Xia J. et al. Morphological and phylogenetic analyses reveal three new species of Didymella (Didymellaceae, Pleosporales) from Jiangxi, China. J. Fungi. 2024. V. 10. P. 75. https://doi.org/10.3390/jof10010075
- Minh B.Q., Schmidt H.A., Chernomor O. et al. IQ-TREE2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020. V. 35 (7). P. 1530–1534. https://doi.org/10.1093/molbev/msaa015
- Nekrasov E.V., Shumilova L.P., Gomzhina M.M. et al. Diversity of endophytic fungi in annual shoots of Prunus mandshurica (Rosaceae) in the South of Amur Region, Russia. Diversity. 2022. V. 14. P. 1124. https://doi.org/10.3390/d14121124
- O’Donnell K., Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylog. Evol. 1997. V. 7. P. 103–116. https://doi.org/10.1006/mpev.1996.0376
- Pearce T.L., Scott J.B., Crous P.W., et al. Tan spot of pyrethrum is caused by a Didymella species complex. Plant Pathol. 2016. V. 65. P. 1170–1184. https://doi.org/10.1111/ppa.12493
- Phookamsak R., Liu J-K., McKenzie E.H.C. et al. Revision of Phaeosphaeriaceae. Fungal Divers. 2014. V. 68. P. 159–238. https://doi.org/10.1007/s13225-014-0308-3
- Quaedvlieg W., Verkley G.J.M., Shin H–D., et al. Sizing up Septoria. Stud. Mycol. 2013. V. 75. P. 307–390. https://doi.org/10.3114/sim0017
- Rai M., Zimowska B., Kövics G.J. The genus Phoma: what we know and what we need to know? In: M. Rai, B. Zimowska, G.J. Kövics (eds). Phoma: diversity, taxonomy, bioactivities, and nanotechnology. Springer, Cham, Switzerland, 2022. P. 3–11. https://doi.org/10.1007/978-3-030-81218-8_1
- Rehner S.A., Samuels G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res. 1994. V. 98 (6). P. 625–634. https://doi.org/10.1016/S0953-7562(09)80409-7
- Saleh A.A., Leslie J.F. Cephalosporium maydis is a distinct species in the Gaeumannomyces-Harpophora species complex. Mycologia. 2004. V. 96 (6). P. 1294–1305. https://doi.org/10.2307/3762146
- Samson R.A., Hoekstra E.S., Frisvad J.C. et al. Introduction to food- and airborne fungi. Sixth edn. Centraal bureau voor schimmel cultures, Utrecht, 2002.
- Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. PNAS USA. 1977. V. 74 (12). P. 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
- Schoch C.L., Seifert K.A., Huhndorf S. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS USA. 2012. V. 109. P. 6241–6246. https://doi.org/10.1073/pnas.1117018109
- Sung G.H., Sung J.M., Hywel-Jones N.L. et al. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol. Phylog. Evol. 2007. V. 31. P. 1204–1223. https://doi.org/10.1016/j.ympev.2007.03.011
- Taylor J.W., Jacobson D.J., Kroken S., et al. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 2000. V. 31(1). P. 21–32. https://doi.org/10.1006/fgbi.2000.1228
- Tennakoon D.S., Thambugala K.M., de Silva N.I., et al. Leaf litter saprobic Didymellaceae (Dothideomycetes): Leptosphaerulina longiflori sp., nov. and Didymella sinensis, a new record from Roystonea regia. AJOM. 2019. V. 2 (1). P. 87–100. https://doi.org/10.5943/ajom/2/1/3
- Thompson J.D., Gibson T.J., Plewniak F. et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997. V. 24. P. 4876–4882. https://doi.org/10.1093/nar/25.24.4876
- Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990. V. 172. P. 4238–4246. https://doi.org/10.1128/jb.172.8.4238–4246.1990
- White T.J., Bruns T., Lee S. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols. In: M.A. Innis etc. (eds). A guide to methods and applications. San Diego, Acad. Press, 1990. pp. 315–322.
- Zhao P., Crous P.W., Hou L.W. et al. Fungi of quarantine concern for China I: Dothideomycetes. Persoonia. 2021. V. 47. P. 45–105. https://doi.org/10.3767/persoonia.2021.47.02
- Zimowska B. Taxonomical evaluation of Phoma: history of classification, current status and future directions. In: M Rai, B Zimowska, GJ Kövics (eds). Phoma: diversity, taxonomy, bioactivities, and nanotechnology. Springer, Cham, Switzerland, 2022. P. 13–34. https://doi.org/10.1007/978-3-030-81218-8_2
- Ганнибал Ф.Б., Гасич Е.Л., Берестецкий А.О. и др. (Gannibal et al.) Материалы к изучению микромицетов сорных и дикорастущих травянистых растений юга Дальнего Востока России (Приморский и Хабаровский края) // Микология и фитопатология. 2010. Т. 44. С. 105–117. https://doi.org/10.31111/nsnr/2010.44.105
- Гасич Е.Л., Титова Ю.А. (Gasich, Titova) Микромицеты на сорных растениях Ростовской обл. // Бюллетень Всероссийского научно-исследовательского института защиты растений. 1998. Т. 78–79. С. 64–70.
- Гасич Е.Л. (Gasich) Микобиота вьюнка полевого на территории европейской части России и микромицеты, перспективные для его контроля. Микология и фитопатология. 2001. Т. 35(2). С. 1–10.
- Гасич Е.Л., Ганнибал Ф.Б., Берестецкий А.О. и др. (Gasich et al.) Материалы к изучению микромицетов сорных растений Краснодарского края и республики Адыгея. Новости систематики низших растений // 2011. Т. 45. С. 91–100. https://doi.org/10.31111/nsnr/2011.45.91
- Гасич Е.Л., Ганнибал Ф.Б., Берестецкий А.О. и др. (Gasich et al.) Видовой состав микромицетов на сорных и дикорастущих травянистых растениях Псковской обл. // Вестник защиты растений. 2015. Т. 84(2). С. 28–35.
- Гасич Е.Л., Ганнибал Ф.Б., Берестецкий А.О. и др. (Gasich et al.) Микромицеты сорных и дикорастущих травянистых растений республики Северная Осетия – Алания // Микология и фитопатология. 2016. Т. 50. № 4. С. 257–265.
- Гасич Е.Л., Гагкаева Т.Ю., Хлопунова Л.Б. и др. (Gasich et al.) Микромицеты сорных и дикорастущих травянистых растений Смоленской обл. // Микология и фитопатология. 2017. Т. 51. № 5. С. 276–282.
- Гомжина М.М., Ганнибал Ф.Б. (Gomzhina, Gannibal) Современная систематика грибов рода Phoma sensu lato // Микология и фитопатология. 2017. Т. 51. № 5. С. 268–275. https://doi.org/10.31857/S0026364821050056
- Гомжина М.М., Гасич Е.Л. (Gomzhina, Gasich) Редкие виды фомоидных грибов, ассоциированные с соей. Микология и фитопатология. 2024. Т. 58(2). С. 145–162. https://doi.org/10.31857/S0026364824020062
补充文件
