Complexes of cultivated microfungi from peatlands in the mountain landscapes of the Sub-Polar Urals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study concerned the abundance and species composition of cultivated microfungi from peat soils and hollows of flat-palsa bogs in the mountain landscapes of the sub-Polar Urals (the northern part of National Park Yugyd Va). The number of fungi in the studied peat soils varied from 0.4 to 242 thousand CFUs/g a.d.s. with maximum values in the upper layer of live mosses of Bog I – 242±66.2 thousand CFUs/g a.d.s.. In the bog hollows, the abundance of micromycetes had relatively low values, in hollow of Bog I – 28.6±7.1 thousand CFUs/g a.d.s., in hollow of Bog II – 32.9±25.5 thousand CFUs/g a.d.s. The taxonomic list of cultivated micromycetes included 61 species of fungi from 15 genera, two divisions and Mycelia sterilia. The Mucoromycota division was represented by 17 species from the genera Absidia, Actinomucor, Mucor, Mortierella, and Umbelopsis. The majority if cultivated fungi belonged to the division Ascomycota (43 species from 10 genera). The genus Penicillium dominates by species number (21 species). Reasoning from the frequency of occurrence, the structure of the complex of microfungi included rare and random species by 53%. The share of frequent and dominant fungi accounted for 34 and 13%, respectively. The dominating group consisted of Pseudogymnoascus pannorum and sterile mycelium. Frequent species were Mortierella alpina, Mucor hiemalis, Umbelopsis ramanniana, U. vinacea, Penicillium canescens, P. granulatum, P. lividum, P. simplicissimum, P. spinulosum, P. thomii, P. verrucosum, Talaromyces funiculosus. Most abundant in the layer of live mosses were Penicillium spinulosum (17%), P. thomii (18%), Talaromyces funiculosus (19%). In the seasonally thawed peat layers, the following species were highly abundant as Pseudogymnoascus pannorum (11%), Talaromyces funiculosus (14%), and sterile mycelium (16%). In the gley soil horizons, Pseudogymnoascus pannorum (78%) dominated by abundance. Only single colonies of sterile mycelium were found in frozen peat layers.

About the authors

V. А. Kovaleva

Institute of Biology of Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: kovaleva@ib.komisc.ru
Russian Federation, Syktyvkar

Yu. А. Vinogradova

Institute of Biology of Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences

Email: vinogradova@ib.komisc.ru
Russian Federation, Syktyvkar

Е. М. Lapteva

Institute of Biology of Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences

Email: lapteva@ib.komisc.ru
Russian Federation, Syktyvkar

С. V. Deneva

Institute of Biology of Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences

Email: denewa@rambler.ru
Russian Federation, Syktyvkar

Е. М. Perminova

Institute of Biology of Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences

Email: perminova@ib.komisc.ru
Russian Federation, Syktyvkar

References

  1. Aleksandrova A.V., Velikanov L.L., Sidorova I.I. Key to species of the genus Trichoderma. Mikologiya i fitopatologiya. 2006. V. 40 (6). P. 457–468. . (In Russ.).
  2. Andersen R., Chapman S.J., Artz R.E. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 2013. V. 57. P. 979–994. https://doi.org/10.1016/j.soilbio.2012.10.003
  3. Andersen R., Francez A.J., Rochefort L. The physicochemical and microbiological status of a restored bog in Quebec: identification of relevant criteria to monitor success. Soil Biol. Biochem. 2006. V. 38. P. 1375–1387. https://doi.org/10.1016/j.soilbio.2005.10.012
  4. Bilanenko E.N., Grum-Grzhimaylo O.A. A comparative analysis of the cultured micromycetes in oligotrophic peatlands of natural biosphere reservations located in the northern and central parts of Russia. Nature Conserv. Res. 2016. V. 1 (2). P. 90–95. http://dx.doi.org/10.24189/ncr.2016.019
  5. Domsch K.H., Gams W., Anderson T.H. Compendium of soil fungi. IHW-Verlag, Eching, 2007.
  6. Egorova L.N. Soil fungi of the Far East: Hyphomycetes. Nauka, Leningrad, 1986. . (In Russ.).
  7. Ellis M.B. Dematiaceous Hyphomycetes. Kew, 1971.
  8. Golovchenko A.V., Kurakov A.V., Semenova T.A. et al. Abundance, diversity, viability, and factorial ecology of fungi in peatbogs. Eurasian Soil Sci. 2013. V.46 (1). P. 74–90. https://doi.org/10.1134/S1064229313010031
  9. Golovchenko A.V., Semenova T.A., Polyakova A.V. et al. The structure of the micromycete lump plex of oligotrophic peat bogs south taiga subzone of Western Siberia. Mikrobiologiya. 2002. V. 71 (5). P. 667–674. (In Russ.).
  10. Goncharova N.N., Lapteva E.M., Deneva S.V. et al. Features of the formation of hummocky swamps in the mountain landscapes of the Subpolar Urals. Materials of International Field Symposium “Mire ecosystems of northeast Europe”. Syktyvkar, 2017, pp. 58–65. (In Russ.).
  11. Grishkan I.B. Mycobiota and biological activity of soils in the upper Kolyma River. Dalnauka, Vladivostok, 1997. (In Russ.).
  12. Grum-Grzhymaylo O.A., Bilanenko E.N. Microfungi as a component of bogs ecosystems. Mikologiya i fitopatologiya. 2010. V. 44 (6). P. 485–496 . (In Russ.).
  13. Grum-Grzhymaylo O.A., Bilanenko E.N.The micromycete complexes of bogs at the Kandalaksha bay of the white sea. Mikologia i fitopatologiya. 2012. V. 46. P. 297–305. (in Russ.)
  14. Grum-Grzhymaylo O.A., Debets A.J.M., Bilanenko E.N. Mosaic structure of the fungal community in the Kislo-Sladkoe Lake that is detaching from the White Sea. Polar Biology. 2018. V. 41. P. 2075–2089. https://doi.org/10.1007/s00300-018-2347-9
  15. Index Fungorum CABI Bioscience Database. https://www.indexfungorum.org/. Accessed 25.03.2023.
  16. Joosten H., Tanneberger F., Moen A. Mires and peatlands of Europe. Status, distribution and conservation. Schweizerbart Science Publisher, Stuttgart, 2017.
  17. Khabibullina F.M. Soil mycobiota of natural and anthropogenically disturbed ecosystems of the North-East of the European part of Russia. Abstract of Dr. Biol. Thesis. Syktyvkar, 2009. (In Russ.).
  18. Khabibullina F.M., Kuznetsova E.G., Vaseneva I.Z. Micromycetes in podzolic and bog-podzolic soils in the middle taiga subzone of northeastern European Russia. Eurasian Soil Sci. 2014. V. 47. P. 1027–1032. https://doi.org/10.1134/S1064229314100044.pdf
  19. Kirtsideli I.Yu. Soil microfungi of the Barents sea coast (near Varandey settlement). Novosti sistematiki nizshikh rasteniy. 2009. V. 43. P. 113–121. (In Russ.).
  20. Kirtsideli I.Yu. Microscopic fungi in the soils of Hays Island (Franz Josef Land). Novosti sistematiki nizshikh rasteniy. 2015. V. 49. P. 151–160 . (In Russ.).
  21. Kirtsideli I.Yu. Microscopic fungi in soils and earths of arctic mountain systems. Biosfera. 2016. V. 8 (1). P. 63–68. (In Russ.).
  22. Kirtsideli I.Yu., Tomilin B.A. Soil micromycetes from Northern Land Archipelago. Mikologiya i fitopatologiya. 1997. V. 31 (6). P. 1–6. (In Russ.).
  23. Kirtsideli I.Yu., Vlasov D.Yu., Barantsevich E.P. et al. Microfungi from soil of polar island Izvestia TSIK (Kara sea). Mikologiya i fitopatologiya. 2014. V. 48 (6). P. 365–371. (In Russ.).
  24. Kochkina G.A., Ivanushkina N.E., Ozerskaya S.M. Structure of mycobiota of permafrost. Mikologiya segodnya. 2011. V. 2. P. 178–184 . (In Russ.).
  25. Kurakov A.V. Methods for isolation and characterization of complexes of microscopic fungi in terrestrial ecosystems. Maks Press, Moscow, 2001 . (In Russ.).
  26. Lapteva E.M., Kovaleva V.A., Vinogradova Yu.A. et al. Micromycetes in peatsoilsofpalsamires in theforest – tundra zone. Vestnik Instituta Biologii. 2017. V. 3. P. 30–36. (In Russ.).
  27. Magurran E. Ecological diversity and its measurement. Mir, Moscow, 1992 . (In Russ.).
  28. Methods of soil microbiology and biochemistry. Moscow, 1991. (In Russ.).
  29. Novakovskiy А.B. The interaction between Excel and the statistical package R for data processing in ecology. Vestnik Instituta Biologii. 2016. V. 3. P. 26–33 . (In Russ.).
  30. Ozerskaya S.M., Kochkina G.A., Ivanushkina N.E. et al. The structure of micromycete complexes in permafrost and cryopegs of the Arctic. Microbiologiya. 2008. V. 77 (4). P. 482–489. (In Russ.).
  31. Pastukhov A.V. Forecast of changes in soil organic carbon stocks under a moderate climatic scenario in the north of European Russia. Cryosph. Earth. 2016. V. 20 (4). P. 28–36 . (In Russ.).
  32. Pastukhov A., Kovaleva V., Kaverin D. Microbial community structure in ancient European Arctic peatlands. Plants. 2022. V. 11 (20). P. 2704–2714. https://doi.org/10.3390/plants11202704
  33. Pitt J. A laboratory guide to common Penicillium species. Commonwealth scientific and industrial research organization. N.S.W., 1991.
  34. Ramirez C. Manual and atlas of the Penicillia Elsevier Biomedical Press, Amsterdam; N.Y.; Oxf., 1982.
  35. Schneider J., Jungkunst H.F., Ťupek B. et al. Methane emissions from paludified boreal soils in European Russia as measured and modeled. Ecosystems. 2018. V. 21. P. 827–838. https://doi.org/10.1007/s10021-017-0188-y
  36. Shcherbakova V.A., Kochkina G.A., Ivanushkina N.E. et al. Growth of the fungus Geomyces pannorum under anaerobiosis. Microbiology. 2010. V. 79 (6). P. 845–848. (In Russ.).
  37. Sigler R., Gibas C.F.C. Utility of a cultural method for identification of the ericoid mycobiont Oidodendron maius confirmed by IST sequence analysis. Stud. Mycol. 2005. V. 53. P. 63–74. https://doi.org/10.3114/sim.53.1.63
  38. Sizonenko T.A., Khabibullina F.M., Zagirova S.V. Soil microbiota of meso-oligotrophic peatland of middle taiga. Mikologiya i fitopatologiya. 2016. V. 50 (2). P. 115–123 . (In Russ.).
  39. Strack M., Waddington J.M., Tuittila E.S. Effect of water table drawdown on northern peatland methane dynamics: implications for climate change. Global Biogeochem. Cycles. 2004. V. 18. P. 1–7. https://doi.org/10.1029/2003GB002209
  40. Summerbell R.C. Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud. Mycol. 2005. V. 53. P. 121–145. http://dx.doi.org/10.3114/sim.53.1.121
  41. Thormann M.N. Diversity and function of fungi in peatlands: a carbon cycling perspective. Can. J. Soil Sci. 2006a. V. 86. P. 281–293. https://doi.org/10.4141/S05-082
  42. Thormann M.N. The role of fungi in boreal peatlands. Ecol. Studies. 2006b. V. 188. P. 101–123. http://dx.doi.org/10.1007/978-3-540-31913-9_6
  43. Thormann M.N., Currah R.S., Bayley S.E. Microfungi isolated from Sphagnum fuscum from a southern boreal bog in Alberta, Canada. Bryologist. 2001. V. 104. P. 548–559. https://doi.org/10.1639/0007-2745(2001)104[0548:mifsff]2.0.CO;2!!
  44. Thormann M.N., Currah R.S., Bayley S.E. The relative ability of fungi from Sphagnum fuscum to decompose selected carbon substrates. Can. J. Microbiol. 2002. V. 48. P. 204–211. https://doi.org/10.1023/A:1022845604385
  45. Thormann M.N., Currah R.S., Bayley S.E. Patterns of distribution of microfungi in decomposing bog and fen plants. Can. J. Bot. 2004. V. 82. P. 710–720. https://doi.org/10.1139/b04-025
  46. Thormann M.N., Rice A.V. Fungi from peatlands. Fungal Diversity. 2007. V. 24. P. 241–299. https://doi.org/228500383_Fungi_from_peatlands
  47. Turunen J., Tomppo E., Tolonen K. Estimating carbon accumulation rate of undrained mires in Finland – application to boreal and subarctic regions. The Holocene. 2002. V. 12. P. 69–80. https://doi.org/10.1191/0959683602hl522rp
  48. Vinogradova Yu.A., Kovaleva V.A., Perminova E.M. et al. Zonal patterns of changes in the taxonomic composition of culturable microfungi isolated from permafrost peatlands of the European Northeast. Diversity. 2023. V. 15 (5). P. 639–650. http://dx.doi.org/10.3390/d15050639
  49. Vinogradova Yu.A., Lapteva E.M., Kovaleva V.A. et al. Biomass of fungi and diversity of cultivated micromycetes in the seasonally thawed layer of hummocky peatlands of the southern tundra. Mikologiya i fitopatologiya. 2021. V. 55 (2). P. 105–118. (In Russ.).
  50. Vinogradova Yu.A., Lapteva E.M., Kovaleva V.A., Perminova E.M. Profile distribution pattern of microfungi in the permafrost-affected peatland of forest-tundra. Mikologiya i fitopatologiya. 2019. V. 53 (6). P. 342–353 . (In Russ.).
  51. Vitt D.H., Halsey L.A., Bauer I.E. Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Can. J. Earth Sciences. 2000. V. 37. P. 683–693. https://doi.org/10.1139/e99–097
  52. Александрова А.В., Великанов Л.Л., Сидорова И.И. (Aleksandrova et al.) Ключ для определения видов рода Trichoderma // Микология и фитопатология. 2006. Т. 40. № 6. С. 457–468.
  53. Виноградова Ю.А., Лаптева Е.М., Ковалева В.А. и др. (Vinogradova et al.) Распределение микроскопических грибов в многолетнемерзлых торфяниках лесотундры // Микология и фитопатология. 2019.Т. 53. № 6. С. 342–353.
  54. Виноградова Ю.А., Лаптева Е.М., Ковалева В.А. и др. (Vinogradova et al.) Биомасса грибов и разнообразие культивируемых микромицетов в сезонноталом слое бугристых торфяников южной тундры // Микология и фитопатология. 2021. Т. 55. № 2. С. 105–118.
  55. Головченко А.В., Семенова Т.А., Полякова А.В. и др. (Go-lovchenko et al.) Структура микромицетного комплекса олиготрофных тофяников южно-таежной подзоны Западной Сибири // Микробиология. 2002. Т. 71. № 5. С. 667–674.
  56. Гончарова Н.Н., Лаптева Е.М., Денева С.В. и др. (Gonc-harova et al.) Особенности формирования бугристых болот в горных ландшафтах Приполярного Урала // Мат-лы междун. полевого симпозиума “Болотные экосистемы Северо-Востока Европы и проблемы экологической реставрации в зоне многолетней мерзлоты”. Сыктывкар, 2017. С. 58–65.
  57. Гришкан И.Б. (Grishkan) Микобиота и биологическая активность почв верховий Колымы. Владивосток: Дальнаука, 1997. 136 с.
  58. Грум-Гржимайло О.А., Биланенко Е.Н. (Grum-Grzhimailo, Bilanenko) Микроскопические грибы как компонент экосистемы верховых болот // Микология и фитопатология. 2010. Т. 44. № 6. С. 485–494.
  59. Грум-Гржимайло О.А., Биланенко Е.Н. (Grum-Grzhimailo, Bilanenko) Комплексы микромицетов верховых болот побережья Кандалакшского залива белого моря // Микология и фитопатология. 2012. Т. 46. № 5. С. 297–305.
  60. Егорова Л.Н. (Egorova) Почвенные грибы Дальнего Востока: Гифомицеты. Л.: Наука, 1986. 207 с.
  61. Кирцидели И.Ю. (Kirtsideli) Почвенные микроскопические грибы прибрежного района Баренцева моря (окрестности поселка Варандей) // Новости систематики низших растений. 2009. Т. 43. С. 113–121.
  62. Кирцидели И.Ю., Власов Д.Ю., Баранцевич Е.П. и др. (Kirtsideli et al.) Комплексы микроскопических грибов в почвах и грунтах полярного острова Известий ЦИК (Карское море) // Микология и фитопатология. 2014. Т. 48. № 6. С. 365–371.
  63. Кирцидели И.Ю. (Kirtsideli) Микроскопические грибы в почвах острова Хейса (Земля Франца Иосифа // Новости систематики низших растений. 2015. Т. 49. С. 151–160.
  64. Кирцидели И.Ю. (Kirtsideli) Микроскопические грибы в почвах и грунтах арктических горных систем // Биосфера. 2016. Т. 8. № 1. С. 63–78.
  65. Кирцидели И.Ю., Томилин Б.А. (Kirtsideli, Tomilin) Почвенные микромицеты архипелага Северная Земля // Микология и фитопатология. 1997. Т. 31. № 6. С. 1–6.
  66. Кочкина Г.А., Иванушкина Н.Е., Озерская С.М. (Kochkina et al.) Структура микобиоты многолетней мерзлоты // Микология сегодня. Т. 2. Национальная академия микологии. М., 2011. С. 178–186.
  67. Кураков А.В. (Kurakov) Методы выделения и характеристики комплексов микроскопических грибов наземных экосистем: учебно-методическое пособие. М.: Макс Пресс, 2001. 92 с.
  68. Лаптева Е.М., Ковалева В.А., Виноградова Ю.А. и др. (Lapteva et al.) Микроскопические грибы в мерзлотных торфяных почвах бугристых болот лесотундры // Вестник ИБ Коми НЦ УрО РАН. 2017. № 3. С. 30–36.
  69. Методы почвенной микробиологии и биохимии (Methods) / под ред. Д.Г. Звягинцева. М.: МГУ, 1991. 304 с.
  70. Мэгарран Э. (Magurran) Экологическое разнообразие и его измерение. Москва: Мир, 1992. 161 c.
  71. Новаковский А.Б. (Novakovskiy) Взаимодействие Excel и статистического пакета R для обработки данных в экологи // Вестник Института биологии Коми НЦ УрО РАН. 2016. № 3. С. 26–33.
  72. Озерская С.М., Кочкина Г.А., Иванушкина Н.Е. и др. (Ozerskayaetal.) Структура комплексов микромицетов в многолетнемерзлых грунтах и криопэгах Арктики // Микробиология. 2008. Т. 77. № 4. С. 542–550.
  73. Пастухов А.В. (Pastukhov) Прогноз изменения запасов почвенного органического углерода при умеренном климатическом сценарии на севере Европейской России // Криосфера Земли. 2016. Т. 20. № 4. С. 28–36.
  74. Сизоненко Т.А., Хабибуллина Ф.М., Загирова С.В. (Sizonenko et al.) Почвенная микробиота мезо-олиготрофного болота средней тайги // Микология и фитопатология. 2016. Т. 50. № 2. С. 115–123.
  75. Хабибуллина Ф.М. (Khabibullina) Микобиота почв естественных и антропогенно нарушенных экосистем Северо-Востока Европейской части России. Автореф. дисс. … докт. биол. наук. Сыктывкар, 2009. 45 с.
  76. Щербакова В.А., Кочкина Г.А., Иванушкина Н.Е. и др. (Shcherbakova et al.) Исследование роста грибов Geomyces pannorum в условиях анаэробиоза // Микробиология. 2010. Т. 79. № 6. С. 845–848.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies